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Mit großer Freude blicken wir auf die 3D in Science & Applications (3D-iSA) 2024 zurück, die am 26. und 27. November 
in Kombination mit der AI4EA stattfand. Als 26. Veranstaltung der Workshop-Reihe der GFaI setzte die 3D-iSA die 
langjährige Tradition des interdisziplinären Austauschs fort und präsentierte sich dabei in einem neuen Gewand. Der 
neue Titel „3D in Science & Applications“ spiegelt den Anspruch wider, aktuelle wissenschaftliche Entwicklungen und 
anwendungsorientierte Lösungen in den Bereichen der 3D-Technologien miteinander zu verknüpfen.

Mit 13 Vorträgen in fünf thematischen Sessions bot die 3D-iSA 2024 einen umfassenden Überblick über die Vielfalt 
und Relevanz moderner 3D-Technologien. Rund 50 Teilnehmende aus Wissenschaft, Industrie und Praxis kamen 
zusammen, um sich über innovative Ansätze, methodische Fortschritte und praxisnahe Anwendungen auszutauschen. 
Die Beiträge spannten dabei einen weiten thematischen Bogen – von der 3D-Datenerfassung und Rekonstruktion über 
die Kalibrierung hochpräziser Systeme bis hin zur additiven Fertigung, Datenanalyse und Qualitätssicherung.

Ein zentrales Anliegen der 3D-iSA war es, die interdisziplinäre Vernetzung zu fördern. Insbesondere die Verbindung mit 
der AI4EA ermöglichte es, Synergien zwischen den Bereichen 3D-Technologien und Künstliche Intelligenz zu schaffen. 
Der intensive Austausch während der Vorträge und Diskussionen zeigte, wie eng diese Felder miteinander verbunden 
sind und welche Potenziale für die Zukunft in ihrer Zusammenarbeit liegen.

Unser besonderer Dank gilt allen, die diese Veranstaltung möglich gemacht haben: den Vortragenden für ihre 
spannenden und inspirierenden Beiträge, dem Programmkomitee und Organisationsteam für die engagierte Planung 
sowie allen Teilnehmenden, die durch ihre Fragen, Diskussionen und Anregungen den Workshop zu einem lebendigen 
Ort des Austauschs gemacht haben. Dank Ihnen konnte die 3D-iSA 2024 erneut zeigen, dass 3D-Technologien weit 
über ihre traditionellen Anwendungsfelder hinausreichen und ein wesentlicher Treiber für Innovation und Fortschritt 
sind.

Januar 2025                          Felicitas Böhm
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Künstliche Intelligenz (KI) ist heute ein zentraler Treiber für Innovationen in Wissenschaft, Industrie und Technik. 
Sie durchdringt nahezu alle Bereiche moderner Technologien und schafft Lösungen, die noch vor wenigen Jahren 
undenkbar erschienen. Von der Produktentwicklung über die Produktion bis hin zur Wartung und Zustandsüberwachung 
revolutioniert KI Prozesse und schafft neue Möglichkeiten für Effizienz und Präzision.

Der Berlin Workshop on Artificial Intelligence for Engeneering Applications 2024 (AI4EA24), welcher am 27. und 28. 
November 2024 stattfand,  greift genau diese Themen auf und präsentiert KI-basierte Lösungen für industrielle 
Herausforderungen. In diesem Jahr fand der Workshop bereits zum dritten Mal statt, und wir freuen uns sehr über 
das stetig wachsende Interesse an dieser Veranstaltung. AI4EA hat sich als eine bedeutende Plattform für den 
Wissenstransfer zwischen Forschung und Industrie etabliert. Der Workshop legt bewusst den Fokus auf den Austausch 
zwischen diesen beiden Welten und bietet Wissenschaftlern sowie Industrieexperten die Möglichkeit, ihre Ideen, 
Forschungsergebnisse und praktischen Herausforderungen zu diskutieren und zu veröffentlichen.

Im Jahr 2024 standen wieder die Anwendungsbereiche Qualitätssicherung in der Produktion, Predictive Maintenance, 
Prozesssteuerung und -optimierung sowie Produktentwicklung im Mittelpunkt des Workshops. Diese Themen spiegeln 
die aktuellen Bedürfnisse und Entwicklungen in der Industrie wider und zeigen, wie KI-basierte Ansätze reale Probleme 
lösen können.

Insgesamt gingen 13 Einreichungen ein, von denen alle für eine Präsentation im Rahmen des Workshops akzeptiert 
wurden. Da die Autoren die Möglichkeit hatten, ihre Beiträge alternativ als Poster zu präsentieren, und nicht alle 
eingereichten Arbeiten zur Veröffentlichung zugelassen wurden, umfasst dieser Tagungsband fünf ausgewählte 
Beiträge. Jeder zur Veröffentlichung eingereichte Beitrag durchlief ein Begutachtungsprozess im Peer Review-
Verfahren mit mindestens zwei, in den meisten Fällen jedoch drei oder vier anonymen Reviews. Dies gewährleistet die 
hohe Qualität der in diesem Band präsentierten Arbeiten.

Unser besonderer Dank gilt dem Programmkomitee für die engagierte und sorgfältige Begutachtung der Einreichungen. 
Darüber hinaus möchten wir uns herzlich bei Frau Beuster vom GRW-Netzwerk NET4AI und beim Netzwerkmanagement 
vom ZIM-Innovationsnetzwerk AI4Tech bedanken, die als Mitveranstalter des Workshops maßgeblich zur Moderation 
und Unterstützung beigetragen haben. Nicht zuletzt gilt unser Dank den Autoren, die mit ihren Beiträgen und 
Präsentationen die Veranstaltung bereichert haben.

Wir hoffen, dass dieser Tagungsband nicht nur die vielfältigen Anwendungsmöglichkeiten von KI in der Industrie 
aufzeigt, sondern auch als Inspiration für zukünftige Forschung und Zusammenarbeit dient.

Januar 2025                          Benjamin Hohnhäuser
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Reconstruct-HM3D: Providing CAD models as ground truth for the 
Habitat-Matterport 3D Research Dataset

Marian Bookhahn1, Tara Lorenz2, Felicitas Böhm2, Frank Neumann1

1HTW – Hochschule für Technik und Wirtschaft Berlin, Fachbereich 2: Ingenieurwissenschaften - 
Technik und Leben, Studiengang Ingenieurinformatik, Wilhelminenhofstr. 75a, 12459 Berlin
2GFaI e.V., Volmerstraße 3, 12489 Berlin

eMail: frank.neumann@htw-berlin.de

Abstract: The research project ServiceTechNavigator 
aims at supporting service technicians, who need to 
reach an installation site on a vast factory premise. The 
project adopts a novel approach in indoor navigation 
employing the existing 3D Building Information Models 
(BIM) as an absolute position reference for this purpose. 
Such models are widely adopted and utilized in recent 
years for a variety of tasks in construction planning and 
facility management. In 3D BIM data, real geometries 
are represented by parametric models, like lines or 
planes, which are enriched by different kinds of semantic 
categories, like walls, windows, doors, etc. Compared 
to huge memory demanding 3D scans, such condensed 
representations are easier to work with. To enable 
research in the area of 3D BIM data reconstruction and 
BIM based indoor navigation, large datasets with real 
sensor data along with parametric representations are 
needed.

Thus, we present Reconstruct-HM3D, which is an 
extension to the Habitat-Mat-terport 3D Research Dataset 
(HM3D) and provides semantically enriched parametric 
models for the real scan data. Considering HM3D is the 
largest-ever da-taset of real 3D indoor spaces, our ground 
truth CAD models enable research in a variety of areas, 
such as Room Plan Estimation (RPE) (cf. RoomPlan Swift 
API) and BIM based indoor navigation. We reconstructed 
all indoor spaces of HM3D programmatically and revised 
them manually. Ongoing evaluations of the Reconstruct-
HM3D dataset show its high benefits for the training and 
evaluation of the trajectory reconstruction, various types 
of features, segmentation, monocular depth estimation, 
place recognition and vendor neutral extraction of room 
plans.

1 INTRODUCTION

If service technicians from a service company are 
commissioned to replace a spare part or to carry out 
maintenance for production, transport (e.g. escalators, 
lifts) or technical building systems (e.g. heating, 
ventilation, sanitation), they must be enabled by the cli-
ent to reach the installation site of the respective systems. 
In addition to the exact address and room number, 
they also need the route to the place of performance. 
Particularly in the case of large companies with a central 
entrance and extensive building and area structures 
(e.g. manufacturing industry, hospitals, logistics), the 
challenges are great, so that valuable time is often lost 
until the service provider finds their way around an 
unfamiliar site and arrives at the installation location. Due 
to the high frequency of such appointments, the client‘s 
specialist departments generally do not have sufficient 
personnel capacity to accompany the service providers 
and guide them to the site. The same applies to security 
and security guards, who are tied to a specific location 
and are not allowed to leave their work area.

1.1 OBJECTIVES OF THE SERVICETECHNAVIGATOR 
RESEARCH PROJECT

The ServiceTechNavigator R&D project aims to navigate 
a service technician within an industrial property to and 
from their work location using an existing BIM model. For 

Keywords: BIM, HM3D, Reconstruct-HM3D, trajectory 
reconstruction. place recognition, room plan estimation
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Table 1. The ServiceTechNavigator app guides service 
technicians on the way to their work location

Table 3. Left: semantic segmentation of the current 
scene, Right: association between features and elements 
in the BIM model providing an absolute position

Table 2. Wall map comparison: correctly matched wall 
segments are depicted in green in contrast to the red 
segment contained in the wall map but missing at the 
location

this purpose, he will be given a tablet at reception, on 
which the ServiceTechNavigator software runs and which 
he must carry with him during his entire assignment. 
The app will display all the important information that 
will guide him on his way to the site, during his work 
and back to reception (cf. Fig. 1). To enable the service 
technician to navigate, his trajectory within the site must 
be determined during his entire assignment.

1.2 NAVIGATION APPROACH OF THE 
SERVICETECHNAVIGATOR RESEARCH PROJECT

The ServiceTechNavigator app adopts a novel approach 
in indoor navigation employing the existing 3D Building 
Information Models (BIM) as an absolute position refer-
ence and uses its geometric features for orientation. 
Unlike today‘s radio-based solutions (active location 
determination via trigonometry), the project idea is based 
on a passive approach and therefore does not require any 
intervention in the infrastructure or the equipping of radio 
anchors or beacons. The optical navigation approach is 
to be implemented in an app environment that utilises 
the internal sensors of modern mobile devices and can 
draw on existing CAD/BIM models (reference points 
from the model and optical detection) for orientation. 
Another advantage is the use of enriched information on 
the walking surfaces and features, so that the envisaged 
solution also supports barrier-free use by recognising 
obstacles and elevations.

Besides the use of the BIM model, the featured approach 
calculates the base trajectory from the IMU integration, 
where the lateral drift will be minimised by comparing 
detected areas with a wall map extracted from the BIM 
model (cf. Fig 2).

In addition, the global position will be synchronised 
through machine-learned feature for distinct elements 
(e.g. pillars, windows, doors). Fig. 3 depicts the matching 
of these recognised features with locations in the BIM 
model. The left image shows the semantic segmentation 
of the current scene, whereas the right side depicts the 
association between such features with elements in the 
BIM model providing an absolute position.

1.3 RESEARCH OBJECTIVES FOR RECONSTRUCT-
HM3D

The previously laid-out indoor navigation approach 
requires extensive training and evaluation data for the 
trajectory reconstruction, various types of features, 
segmentation, place recognition and the extraction of 
room plans. For this purpose, large datasets with real 
sensor data along with parametric representations are 
needed.

In particular, we are interested in scans of buildings 
interiors with sensors whose noise characteristic is close 
to the sensors used in our settings. This includes depth, 
optical, as well as IMU sensors.

Furthermore, we need to have a BIM plan available, 

Papers | 3D-iSA
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against which we can match. On the other hand, there 
should be a lot of (geometric) obstacles placed following 
a realistic distribution.

By keeping the essence of the original HM3D dataset, 
our dataset should permit the generation of arbitrary 
passages through the dataset’s scenes resulting in an 
unlimited number of camera viewpoints and trajectories.

2 RELATED WORK

In the following, the research literature will be reviewed 
regarding datasets that feature the interior of buildings. 
Such datasets are typically categorised into synthetic, 3D 
reconstruction-based, floorplan-based and panorama-
based datasets [1]. Floorplan-based and panorama-
based datasets do not contain realistic geometric models, 
which are required for the employed approach for indoor 
navigation. Therefore, we will focus only on synthetic and 
3D reconstruction-based datasets in the following.

2.1 SYNTHETIC 3D SCENE DATASETS

The SUNCG dataset [2] contains synthetic data featuring 
millions of 3D indoor scenes that comprise annotated 
layouts and object labels. Due to its synthetic character, 
SUNCG contains unrealistic textures and fails to capture 
noise as well as irregularities and, consequently, can 
affect the transferability of trained models to real-world 
scenarios.

In 2023, Meta Research published the Aria Synthetic 
Environments dataset [3] that contains 100,000 
synthetically generated indoor scenes spanning over 
multiple rooms considering the device characteristics 
of the Aria glasses. It aims at the training and evaluation 
of machine learning algorithms for scene understanding 
and embodied AI tasks and offers comprehensive 
ground truth data for the camera trajectory, the floor-
plans, the instance segmentation and the depth maps. 
Nevertheless, the synthetic nature of the data, in 
particular the textures, and the rather small scene size 
make it unsuitable for the task of indoor navigation.

2.2 3D RECONSTRUCTION DATASETS

The Habitat-Matterport 3D (HM3D) Research Dataset is 
a large-scale dataset containing 1,000 high-resolution 
3D scans generated from commercial, residential and 
civic spaces [1]. It is the largest dataset in this category 
and comprises a high number of scenes and floors. Each 
scene in the dataset is represented with photorealistic 
3D meshes (cf. Fig. 4 and 5), allowing for realistic 

interaction and perception tasks in machine learning, 
robotics and computer vision. The dataset is compatible 
with simulators like Habitat, enabling access to RGB-D 
images, IMU data, semantic segmentation maps, and 
agentcentric views. It has distinct advantages over 
other datasets like Gibson [4], Replica [5], RoboTHOR 
[6], MP3D [7] and ScanNet [8], which is it’s high visual 
fidelity, when real images are being compared to images 
rendered from synthetic viewpoints and it low incidence 
of reconstruction artifacts like missing surfaces, holes or 
untextured surface regions [1], enabling the large-scale 
generation of sensor data suitable for monocular depth 
estimation and other image based machine learning 
techniques.

Table 4. Real vs. rendered images from the HM3D dataset 
[1]

Table 5. Example scenes from HM3D dataset [1].

Papers | 3D-iSA
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Table 6. Above: Reconstructed model visualized as a 
triangle mesh | Belowt: Raw mesh from HM3D Gray: Walls 
| Green: Doors | Blue: Windows

3 PROBLEM ANALYSIS

A dataset suitable for our approach of indoor navigation 
should comprise sensor data of indoor scenes from an 
IMU, a camera and ideally a depth sensor, as well as 
the corresponding floorplans in addition. As gathering a 
statistically representative dataset is a rather daunting 
task, it seems wise to use existing datasets. To the 
best of our knowledge, no such dataset exists. While 
the HM3D [1] dataset can be regarded as statistically 
representative, it has the following shortcomings with 
regards to our investigations:

• There are no BIM data or floorplan available.

• The employed depth sensors are not comparable 
to the relevant sensors in our settings. Their noise 
characteristic might be very different from ours.

• The dataset contains no notion of trajectories. All 
measurements were taken statically from locations 
chosen with the mean to have reconstruction. It 
lacks IMU data altogether.

However, it still seems worthwhile to consider the 
HM3D dataset as a source of a representative sample of 
geometric object distributions. In order to make use of 
the dataset, we plan to undertake the following actions:

• Trajectories: It should make no big difference whether 
a trajectory was simulated or recorded from human 
motion. Human trajectories typically comprise rather 
low frequencies. Thus, they can simply be described 
by handdrawn or programmatically generated spline 
curves.

• IMU: The typical noise characteristics of IMU data is 
generally known and relatively independent of the 
surroundings [9] [10].

• Depth Measurements: Instead of relying on 
dedicated depth sensors, we make use of HM3D’s 
high visual fidelity and employ monocular depth 
estimation. Thereby, we minimize the domain gap 
between synthetic and real sensor data.

4 PROPOSED SOLUTION

We choose to use a staged, semi-automatic process 
based on heuristics to reconstruct CAD-like parametric 
models from the original 3D data of the HM3D dataset. 
Unlike raw 3D scans, which are prone to noise and 
lack structured geometric representations, our 
approach produces clean, structured models (cf. Fig. 
6) by fitting parametric models like planes, detecting 
wall openings, and validating structural features.  

The staged process can be summarized by the steps 
depicted in Fig. 7. Due to the nature of the original HM3D 
data with sensor and processnoise as well as inaccuracies 
of human annotations, the automatic reconstruction 
process needs a vast amount of specifically tweaked 
and tuned heuristics, which details cannot be depicted 
entirely in this work. Therefore, we pick a few examples 
to illustrate which strategies have been chosen.

Papers | 3D-iSA
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5 EVALUATIONS AND DISCUSSION

5.1 ANNOTATION

The original dataset was manually annotated by 
assigning instance-labels to the triangles of the 
reconstructed polygon-meshes. This process is prone 
to inconsistencies and noise, like multiple, in reality 
separated, mesh-segments having the same instance 
ID (cf. Fig. 8), as well as small mesh-fragments, which 
should be regarded as outliers (cf. Fig. 9). The initial 
wall-reconstruction process is mainly based on RANSAC 
plane-fitting, followed by density-based clustering, to 
find aligned but separated wall-segments. During this 
process we do consider metrics like the mean angular 
deviation be-tween triangle-normals and between plane 
and floor-normals for our heuristics.

Table 8. Separate wall-
segments with the same 
instance ID

Table 11. 

Wall-segments 
before merging close 
vertices.

Table 10. Wall-segment with different wall-openings. 
Green lines with red dots indicate detected opening-
proposals.

Fig. 7. Staged reconstruction process

Table 9. Small outlier 
mesh-segment

5.2 WALL-OPENINGS AND DOORS

Considering all types of wall-openings, only openings 
being passable for humans are typically captured by 
floorplans and thus, are relevant to indoor navigation 
tasks. Reconstructing wall-openings from the given 3D 
scans can be difficult, regarding wall-openings can result 
from different types of occlusions like furniture and open 
doors. (cf. Fig. 10).

In the given example in Fig. 10, we sample points at a 
certain height along the wall-mesh (Poisson-Disk-
Sampling) and calculate density-based clusters to 
extract proposals for wall-openings, which are going to 
be validated in a following stage.

5.3 MERGING WALL-EDGES

After reconstructing the wall-segments, gaps and 
intersections, resulting from noisy data, need to be 
fixed (cf. Fig. 11). Consequently, we calculate possible 
intersection points between walls and apply a cost-
function to match corresponding edges. Afterwards, 
wall-dimensions are being corrected accordingly (cf. Fig. 
12).

Papers | 3D-iSA
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Table 12. 

Wall-segments 
after merging close 
vertices.

5.4 VALIDATION OF WALL-OPENINGS AND DOORS

To validate or invalidate the previously introduced 
proposal for wall-openings, different tests need to be 
performed. An opening is considered to be valid if one of 
the following criteria is true:

1. Parts of the floor mesh passes through the opening 
without interruptions.

2. A door-mesh is closely aligned with the wall-opening 
(closed door).

3. Two opening-proposals with close proximity are 
parallel and have similar dimensions.

5.5 MANUAL REVISION

The manual revision process is programmatically guided, 
such that detected inconsistencies, like unmatched doors 
and windows, intersecting walls as well as freestanding 
walls without any merged edges are highlighted to 
the revisor. Due to our highly effective programmatic 
reconstruction pipeline, we were able to manually 
revise all models within less than 200 working hours. 
Considering the corrections needed during revision, we 
achieved a very low false-positive rate of 3% and false-
negative rate of less than 1% for wall-openings.

6 CONCLUSIONS AND OUTLOOK

We provide semantically annotated triangle-meshes 
in PLY format as well as mapping files, to assign the 
instance colours of our models to the original annotation 
colours. This step is necessary, since we split the original 
instances into distinct segments, according to the 
parametric models used. Additionally, we built an exporter 
to convert our data structure into GeoJSON format for 
2D floorplans and CityJSON format [11] for a parametric 
3D representation, which ensures a lightweight encoding 
suitable for indoor navigation.

The proposed solution effectively reconstructs raw 3D 
scans from the HM3D dataset into structured, CAD-like 
parametric models. The semi-automatic methodology en-
sures accuracy and scalability. Based on our enhanced 
dataset, we are able to overcome the issues with the 
original HM3D data outlined in chapter 3.

With our complementing work to the HM3D dataset, we 
enhance its value to many research areas like indoor-
navigation, 3D feature extraction, place recognition as 
well as scene understanding and reconstruction. Ongoing 
evaluations of our dataset within our approaches to 
indoor-navigation show its high benefits for feature 
extraction and trajectory reconstruction. We think it can 
be worthwhile to apply our reconstruction pipeline to 
other datasets like ARKitScenes [12].
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Zusammenfassung: In der heutigen Kriminaltechnik 
sind 2D- und 3DAufnahmeverfahren wichtigeWerkzeuge 
zur Spurenaufnahme und -dokumentation. Insbesondere 
die forensische Fotografie nutzt unterschiedliche 
Wellenspektren zur Sichtbarmachung von Spuren, 
die mit bloßem Auge im sichtbaren Wellenlängen 
nicht erkennbar sind. Mithilfe eines dedizierten 
optischen Aufnahmesystems (Sensor, Objektiv, Filter, 
Strahlenquelle) werden Aufnahmen mit unterschiedliche 
Spektren, wie im Infrarot- (IR) und Ultraviolettbereich (UV), 
angefertigt, um latente Spuren, etwa Fingerabdrücke 
oder biologische Substanzen, sichtbar zu machen. Ein 
besonderer Anwendungsbereich ist die Visualisierung 
von Hämatomen und subkutanen Einblutungen 
an Leichen, die äußerlich oft unsichtbar sind. Im 
Bereich der 3D-Dokumentation werden hochpräzise 
Aufnahmesysteme, von Mikroskopen bis zu terrestrischen 
Laserscannern, bereits seit einiger Zeit eingesetzt. 
Jedoch ist zurzeit eine direkte, messtechnische 
Auswertung von forensischen 2D-Aufnahmen bisher 
nicht möglich. Im Beitrag wird ein Ansatz vorgestellt, 
bei dem ohne zusätzliche Hardwareanforderungen an 
das Aufnahmesystem, forensische 2D-Aufnahmen und 
3D-Scans mittels photogrammetrischer Referenzkörpern 
aufeinander referenziert werden. Ein nachgelagerter 
Texturierungsprozess ermöglicht eine digitale Analyse 
der 3D-Daten. Gestützt wird die Methode durch eine 
Untersuchung zur Abbildungsgenauigkeit, um die 
Aussagefähigkeit der erzeugten, texturierten 3D Daten 
zu stützen.

1 Stand der Technik und Motivation

1.1 Motivation

Das Erkennen charakteristischer Hautmerkmale von 
Geschädigten durch die Analyse von Einblutungsmustern 
und Hämatomen ist für die Aufklärung schwerer Straftaten 
und die Identifizierung von Tätern entscheidend. Hierfür 
ist es unerlässlich, die Verletzungen maßstabsgetreu zu 
dokumentieren, um Rückschlüsse auf Art und Intensität 
der Gewalteinwirkung zu ermöglichen und potenzielle 
Verursacher sowie eingesetzte Objekte zu identifizieren 
oder einzugrenzen.

Auch zur Identifizierung eines potenziellen Täters bei 
Verdacht auf Misshandlung, etwa durch Bissverletzungen 
(siehe Abbildung 1, Links), ist eine Dokumentationund 
vollständige Beschreibung der Verletzungen essenziell, 
um Merkmale wie Zahnlücken oder Unregelmäßigkeiten 
im Gebiss darzustellen.

Schlüsselwörter: Photogrammetrie · Forensische 
Fotografie · Texturierung · 3D-Auswertung

Abb. 1: Links: Bissspuren auf der Haut eines Kindes, 
Rechts: Schuhspuren, welche sich in Form von 
Einblutungen absetzen (Quelle: RM Dresden)
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In Abbildung 1 Rechts sind beispielsweise Verletzungen 
abgebildet, die vermutlich durch Tritte entstanden sind. 
Trotz erkennbarer Strukturen ist die genaue Bestimmung 
des Musters in zweidimensionalen Bildern aufgrund von 
Verzerrungen und gewölbter Haut schwierig und oft 
unzureichend für die Zuordnung eines Tatmittels.

 Würde hier eine 3D-Erfassung der Daten durchgeführt, 
könnte die Ausdehnung der Verletzungsmuster auf 
der Hautoberfläche oder in tieferliegenden Strukturen 
jederzeit reproduzierbar und maßstabsgetreu bestimmt 
werden, insbesondere durch die Kombination von 
multispektraler Fotografie. Ziel ist das Aufstellen 
eines solchen Prozesses sowie die Fusion der dabei 
aufgenommenen Daten. Ferner muss eine Aussage 
zur Methodik und der damit erreichbaren Genauigkeit 
getroffen werden.

1.2 STAND DER WISSENSCHAFT

Als bewährte Methode der Spurensicherung gilt die 
forensische Fotografie, die mit Standard-, IR- und 
UV-Fotografie durchgeführt wird [5,4,11]. Spezielle 
Lichtquellen machen Blutungen unter der Haut sichtbar, 
die bei normalem Licht unsichtbar bleiben. Das Hautkolorit 
und Melanin beeinflussen die Lichtabsorption, die je nach 
Wellenlänge variiert und so eine tiefere Durchdringung 
der Haut ermöglicht [9]. Die Absorption der Haut ist 
wellenlängenabhängig, wobei das Maximum um 500nm 
liegt und damit dem Absorptionsmaxima von Melanin 
und Hämoglobin (Blutfarbstoff) entspricht. Bei längeren 
Wellenlängen (700 bis 1300 nm) reduziert sich die Streuung 
in der Haut. Damit wird hier die größte Eindringtiefe in die 
Haut erreicht [9]. Hämatome entstehen durch stumpfe 
Gewalt, welche die Kapillaren unter der Haut verletzt und 
Blutungen verursacht [4]. Die äußere Sichtbarkeit hängt 
von Faktoren wie der Menge des Hämoglobins und dem 
Abheilungsstadium ab. Forensische Lichtquellen können 
Hämatome klarer von der unverletzten Haut abgrenzen 
und ermöglichen so eine präzisere Dokumentation (Abb. 
2) [5,4,12,18].

Abb. 2: Sichtbare Hämatome bei Verwendung von 
forensischer Fotografie [12]

Neben der 2D-Verletzungsdokumentation ist die 
3D-Erfassung ein wichtiger Ermittlungsschritt. 
Dabei kommen zunehmend Verfahren wie 
Laserscanning, Streifenprojektionsverfahren oder 
photogrammetrische Methoden zum Einsatz [3,2,17]. 
Auch die Computertomographie (CT) wird zunehmend als 
postmortale CT in der forensischen Medizin eingesetzt 
[15]. Sie ergänzt Obduktionen durch 3D-Darstellungen 
innerer Bereiche, die Verletzungsmuster auch für 
medizinische Laien verständlicher machen können. 
Oberflächliche Blutungen sind jedoch aufgrund der CT-
Auflösung schwer zu erkennen. 

Die Kombination von 2D-Bilddaten und 3D-Geometrien 
zur gemeinsamen geometrischen und farblichen 
Beschreibung in einer virtuellen Szene spielt in 
computergrafischen Anwendungen seit Jahren eine 
wichtige Rolle [1]. Hierfür werden Verfahren der 
Photogrammetrie und Computergrafik genutzt. Um ein 
3D-Oberflächenmodell (Objektraum) mit der Textur 
eines 2D-Fotos (Bildraum) zu versehen, muss ein 
Objektpunkt vom Objektkoordinatensystem in das 
Kamerakoordinatensystem (extrisische Orientierung, 
EOR) und anschließend in das 2D-Koordinatensystem des 
Bildes (intrisische Orientierung, IOR) transformiert werden. 
KlassischeWeitwinkel- und Teleobjektive verwenden 
ein zentralperspektivisches Abbildungsmodell, das 
den Einsatz photogrammetrischer Methoden auch 
auf herkömmlichen Smartphone-Kameras ermöglicht 
[8]. In diesem Modell wird die innere Orientierung 
durch eine vorherige Kalibrierung bestimmt, bei der 
mithilfe einer Bündelblockausgleichung verschiedene 
Verzeichnungsparameter [6], der Bildhauptpunkt der 
Kamera und die Brennweite berechnet werden [14]. Die 
äußere Orientierung kann anschließend durch einen 
iterativen Lösungsansatz der Kollinearitätsgleichung 
im sogenannten räumlichen Rückwärtsschnitt ermittelt 
werden [14]. Dabei sind Punktkorrespondenzen 
zwischen 2DBildpunkten und 3D-Objektpunkten 
erforderlich, die beispielsweise durch Referenzmarken 
auf dem realen Objekt markiert sind. Häufig kommen 
hierfür runde Marker mit binären Codes zum Einsatz, die 
mittels Bildverarbeitungsmethoden [20,10] erkannt und 
ausgewertet werden können.

Mit den bekannten Abbildungsparametern (EOR, 
IOR) lässt sich jedem 3DPunkt auf der Oberfläche ein 
entsprechender Punkt im Kamerabild zuweisen. Die 
Oberfläche des digitalen Modells wird durch Dreiecke 
beschrieben, und das Hinzufügen sogenannter 
Texturkoordinaten u, v an den Dreiecksverticies 
ermöglicht die Projektion eines Bildausschnitts auf 
die Dreiecksfläche. Der Bildausschnitt wird durch die 
entsprechenden Punkte im Kamerabild definiert [19,7].
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Der derzeitige Standard zur objektiven Sicherung von 
Spurenbildern und -lagen für gerichtliche Verfahren erfolgt 
bisher in 2D und meist unter Tageslichtbedingungen. Der 
Einsatz multispektraler Techniken, wie im UV- oder IR-
Bereich, erfordert ferner spezialisierte Fachkenntnisse 
in der Spezialfotografie und entsprechende technische 
Ausstattung. Dies führt dazu, dass diese berührungslose, 
spurenschonende Methode nur selten angewendet wird. 
Es gibt bisher keine abgestimmte Prozessbeschreibung, 
welche rechtsmedizinische (forensische 2D-Fotografie) 
und kriminaltechnische, messtechnische Methoden 
(3D-Scans) für die multispektralen Spurensicherung 
vereint.

2 METHODE

Im angestrebten Prozess kommen 3D-Daten zum 
Einsatz, welche meist durch handgeführte 3D-Scanner 
aufgenommen werden. Zu nennen sind hier insbesondere 
die marktverfügbaren Systeme Artec EVA, Artec LEO und Artec 
Spider welche auch beim Landeskriminalamt Sachsen im 
Einsatz sind. Diese Systeme arbeiten mittels strukturierter 
Beleuchtung und liefern 3D-Oberflächendaten in Form 
von Dreiecksnetzen. Die multispektrale Fotografie erfolgt 
ebenfalls zur Spurensicherung und arbeitet mit digitalen 
Kamerasystemen (Nikon Z7II), Festbrennweiteobjektiven 
(Nikkor Z 50mmF1.2 S) und verschiedenen Filtern, 
welche nur enge Wellenlängenbreiche des Lichtes 
passieren lassen. Gleichzeitig werden verschiedene 
Lichtquellen in die Aufnahmekonfiguration integriert. 
Ziel der Untersuchung ist es, zu beurteilen, mit welchem 
Abbildungsfehler Texturen, welche auf Basis forensischer 
Fotografien aufgenommen wurden, auf das 3D-Modell 
aufgebracht werden können. Dies ist nötig um Aussagen 
zur Formspur und deren möglichen Verursacher 
gerichtsfest treffen zu können.

2.1 KAMERAKALIBRIERUNG

Die photogrammetrische Kamerakalibrierung ist ein 
wesentlicher Schritt, um die 3D-Rekonstruktion der 
Oberflächentextur anhand von 2D-Bildaufnahmen 
sicherzustellen. Ziel der Kalibrierung ist es, die IOR 
(wie Brennweite, Lage des Bildhauptpunkts sowie 
Verzeichnungsparameter) sowie die EOR (Lage Kamera 
zu Objekt - Rotation, Translation) präzise zu bestimmen. 
Damit ist jedem 3DPunkt ein Bildpunkt zuordenbar. [14,6] 

Die Kalibrierung erfolgt üblicherweise mithilfe einer 
geometrischen Referenzstruktur (Testfeld) mit präzise 
eingemessenen Punkten oder Markern. Durch das 
Fotografieren des Testfelds aus verschiedenen Winkeln 
können 2D-Bildpunkte und die entsprechenden 
3D-Objektpunkte in Bezug gesetzt werden. Diese 

Punktkorrespondenzen ermöglichen eine iterative 
Berechnung der IOR-Parameter im sogenannten 
Bündelblockausgleich, einem Verfahren, das die 
Abweichungen zwischen den gemessenen und 
berechneten Bildkoordinaten minimiert. In der Praxis ist 
das Modell der zentralperspektivischen Abbildung von 
Bedeutung, welches die Kamera als Projektionszentrum 
darstellt und eine genaue Abbildung zwischen Bild- und 
Objektkoordinaten erlaubt. Sind IOR und EOR bekannt, 
lassen sich Kollinearitätsgleichungen aufstellen, mit dem 
eine Transformation eines 3D-Punktes in den Bildraum 
ermöglicht wird. Um den photogrammetrischen Ablauf 
bei Nahbereichsaufnahmen zu vereinfachen und den 
Zeit- sowie Arbeitsaufwand zu reduzieren, wird statt der 
Testfeldkalibrierung eine Simultankalibrierung eingeführt, 
die es ermöglicht, auf vorherige Kalibrieraufnahmen zu 
verzichten oder diese nur bei Bedarf zu ergänzen. Dabei 
soll die jeweilige IOR direkt während der Datenaufnahme 
berechnet werden [14].

Üblicherweise ist eine vollständige Abdeckung im 
Bild mit Passpunkten zur Simultankalibrierung im hier 
vorliegen forensischen Anwendungsfall nicht möglich. 
Vielmehr können nur Referenzmarker um den Bereich 
der aufzunehmenden Spur (bspw. Hämatom) platziert 
werden. Daher wird nachfolgend untersucht, welchen 
Einfluss die Positionierung der Referenzmarker auf 
die Abbildungsgenauigkeit der Textur, auch unter 
verschieden forensischen Lichtbedingungen hat. Als 
Referenzkörper dienen eigens entwickelte Geometrien 
(Abb. 3), welche neben codierten Referenzmarkern 
und Detektion im Bild auch markante geometrische 
Eigenschaften für die spätere Registrierung im 3D-Raum 
aufweisen. Die monochromatische Referenzmarken in 
Form eines 2x2-Kreisgitters ähnlich [13] stellen über 
die fünf kreisförmigen Markenbestandteilen unmittelbar 
ausreichend Korrespondenzpunkte für die zu initiale 
EOR-Ausrichtung bereit, wobei die Indexierung durch 
eine ternäre Kodierung der einzelnen Passpunkte in drei 
verschiedene Zustände (0=kleiner Passpunkt, 1=großer 
Passpunkt, 2=konzentrischer hohler Passpunkt) erfolgt. 
Diese Kodierung erzeugt eine eindeutige Codekombination 
auf der Grundlage einer Lyndon-Faktorisierung [16]. 
Die Referenzkörper, im folgenen Ternary-Lyndon-
Referenzkörper (TLRK) genannt, sind mit zusätzlichen 
uncodierte kreisrunde Umgebungspasspunkte (schwarz 
auf weis) versehen, um eine ausreichende Anzahl >10 
an korrespondierenden Punkten zu erhalten, die für die 
Simultankalibrierung unerlässlich sind. Die TLRK wurden 
mittels Mehrfarben-3D-Druck (FFF-Verfahren, Drucker 
Bambu Lab P1S) additiv gefertigt und 3D Vermessen 
(ZeissATOSQ, MF 100x100). Die Abweichung liegt dabei 
unter 0.12mm.
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2.2 VERSUCHSAUFBAU UND DURCHFÜHRUNG

Der geplante Testaufbau soll grundlegend mit der 
angestrebten Anwendung im rechtsmedizinischen Kontext 
übereinstimmen (Dokumentation und Vermessung von 
Hämatomen). Es wurde ein Messbereich in etwa der 
Größe eines A4-Blattes vorgesehen. In die Ecken dieses 
Bereiches werden die genannten TLRK platziert (Abb. 
4). Das Testfeld besteht weiterhin aus 14bit-codierten 
Gray-Code-Ringreferenzmarken, die in der Analyse als 
Kontrollpunkte eines Soll-Ist-Vergleichs dienen sollen.

Abb. 3: TLRK mit codiertem 2x2-Kreismuster und 
3D-Referenzenmerkmalen

Tab. 1: Gegenüberstellung der Konfigurationen des 
verwendeten Aufnahmesystems mit Nikon Z7II und Nikkor 
Z50mm F1.2S. In absteigender Reihenfolge von der am 
Sensor ankommmenden minimalen Wellenläge.

Abb.  4: Testaufbau mit TLRK und A4-Testfeld. Alle Marker 
haben eine eindeutige Codierung durch die ternären 
Lyndon-Kreismuster.

Zur 3D-Digitalisierung des Aufnahmesettings wird ein 
3D-Scan mittels Artec LEO erstellt, auf den dann die 
Bildaufnahmen registriert werden sollen. Damit erreicht 
die 3D-Oberfläche eine Punktgenauigkeit von unter 
0.1mm und eine Ortsauflösung von ca. 0.2mm (laut 
Herstellerangaben [3]). Zusätzlich werden Aufnahmen 
des Messbereiches unter verschiedenen Beleuchtungs- 
und Filterkonfigurationen angefertigt (IR-Infrarot, LA-
Laser, VIS-Normallicht, UV-Ultraviolett). Für diese 
Bildaufnahmen wird eine Nikon Z7II mit einem Nikkor Z 

50mmF1.2S Objektiv verwendet (siehe Tabelle 1). Diese 
wurden mit den Experten für kriminalistische Fotografie 
des Landeskriminalamtes Sachsen abgestimmt und 
beruhen auf deren Erfahrungen und entsprechen einem 
realen Aufnahmeszenario. Zur Auswertung und Analyse 
der multispektralen Bildaufnahmen wurde der Testaufbau 
vorab mit einem Zeiss ATOSQ, MF100x100, exakt 
eingemessen, sodass die Soll-Lage der Gray-Code-
Referenzmarken und damit die Objektkontrollpunkte zu 
den jeweiligen TLRK im 3D-Raum bekannt sind.

Für die Registrierung der TLRK im 3D-Scan wird deren 
Geometrie mithilfe eines Iterative-Closest-Point-Best-
Fit-Verfahrens ausgerichtet. Dabei muss zuvor die 
Dreiecksregion im 3D-Scan ausgewählt werden, die zur 
Anpassung der Rotations- und Translationsparameter 
verwendet werden soll. Die ermittelte Transformation 
wird anschließend auf die kodierten und unkodierten 
Objektpunktkoordinaten der Referenzmarken und 
Passmarken angewendet, sodass eine gemeinsame 
Messszene entsteht.

Nach den multispektralen Bildaufnahmen werden 
die TLRK detektiert, sodass in Verbindung mit den 
Umgebungspasspunkten das Messbild ausgerichtet, 
simultan kalibriert und orientiert wird, wodurch IOR und 
EOR bereitstehen. Grundsätzlich wird dafür nur ein TLRK 
benötigt, um diese Simultankalibrierung durchzuführen.

Im Gegensatz zu einer Testfeldkalibrierung wird das 
Aufnahmesystem bei der Simultankalibrierung nicht über 
das gesamte Messvolumen des Schärfentiefenbereichs 
des Objektivs ausgeglichen. Stattdessen findet die 
IOR-Approximation nur für den begrenzten Bildbereich 
statt, in dem die TLRK abgebildet sind. Dadurch kann 
es potenziell zu größeren Abbildungsfehlern der Textur 
des 3D-Scans in den Bildbereichen des Spurmerkmals 
kommen, die nicht von Korrespondenzpunkten abgedeckt 
sind. Zur Untersuchung der Simultankalibrierung werden 
nun verschiedene Zusammenstellungen der TLRK im 
Testaufbau betrachtet, um die Texturierungsgenauigkeit 
bzw. die Projektion der Bildpunkte auf den 3D-Scan zu 
untersuchen: Es werden alle 4 TLRK ([0_5], [12_13], [6_7], 
[15_17]), die gegenüberliegenden TLRK ([0_5]&[12_13] 
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Abb. 5: 3D- und 2D-Genauigkeit der jeweiligen elektromagnetischen Wellenfrequenz
über TL-Referenzmarkerkombinationen.

Abb.  6: Streuungs- und Lagemaße der 3D-Genauigkeit 
der jeweiligen Wellenfrequenz über TL-
Referenzmarkerkombinationen.

oder [6_7]&[15_17]) sowie einzelne TLRK ([0_5] oder 
[6_7]) genutzt. Die Genauigkeitsbeurteilung der 2D- 
und 3D-Abweichungen erfolgt anhand der Distanz zum 
nächstgelegenen Objektkontrollpunkt. Dabei wird die 
2D-Ist-Koordinate, also die detektierten und unverzerrten 
Pixelkoordinaten (Bildpunkte) des Testfelds in der 
Messaufnahme, auf den 3D-Scan projiziert. Durch das 
Schneiden der Sehstrahlen mit dem Dreiecksnetz ergibt 
sich die 3D-Ist-Koordinate der Objektkontrollpunkte 
und die 3D-Genauigkeit in Millimetern. Ebenfalls 
werden die eingemessenen 3D-Soll- Koordinaten der 
Objektkontrollpunkte in das Bild projiziert, sodass die 
2DGenauigkeit in Pixeln bereitsteht.

3 ERGEBNISSE UND DISKUSSION

Grundlage der Ergebnisanalyse ist somit die 
Gesamtbeurteilung der Simultankalibrierung mit der 
Referenzmarkendetektion und den verwendeten 
Ellipsenfitting-Algorithmen. Messbilder mit 
unscharfen Teilbereichen werden nicht gesondert 
aussortiert, sodass eine generelle Aussage über den 
bereitstehenden Anwendungsprozess getroffen werden 
kann. Angeglichene IOR-Parameter sind die Brennweite 
und der Bildhauptpunkt, da die Einbeziehung weiterer 
Verzeichnungsparameter keine Verbesserung 
der Ergebnisse zeigte. Es werden mindestens 
fünf identische Messpositionen im Bereich von 
90◦ bis 45◦ zum Testfeld proWellenbereich 
(VIS, UV, Laser und IR) verwendet und zur 
Gesamtgenauigkeit zusammengefasst. Beim 
Vergleich der TLRK-Zusammenstellungen 
(siehe Abb. 5) mit den jeweiligen 
Wellenspektren liegt die erreichbare RMSE 
(Root Mean Squared Error) zwischen 0.275mm 
und 0.522mm für alle vier TLRK, zwischen 
0.231mm und 0.526mm für gegenüberliegende TLRK 
und zwischen 0.176mm und 0.859mm für einzelne TLRK. 
Die maximale Abweichung von 0.859mm wird dabei im 

Bereich der forensischen Spurendokumentation als 
ausreichenend gering angesehen, nmuss aber in jedem 
Strafverfahren bzgl. der gerichtlichen Verwendbarkeit 
einzeln beurteilt werden. Wie zu erwarten, unterscheiden 
sich die RMSE-Werte der TLRK-Zusammenstellungen 
dahingehend, dass mehr TLRK und eine regelmäßigere 
Verteilung um das Messobjekt bessere Genauigkeiten 
sicherstellen (Vgl. ([0_5] zu [6_7]). Hervorzuheben ist 
bei einzelnen TLRK, dass die Abweichungsstreuung mit 
zunehmendem Abstand zum TLRK wesentlich zunimmt 
und nicht nur einzelne Ausreißer >1mm zu beobachten 
sind (siehe Abb. 6). Um eine ausreichende Genauigkeit im 
Messvolumen sicherzustellen, sollten daher mindestens 
zwei TLRK an den gegenüberliegenden Seiten des 
Messobjekts platziert werden. Die Wellenfrequenzen 
weisen zu einander über die Kombinationen ähnliche 
Abweichungscharakteristika auf, wobei die geringe 
Abweichung von IR mit einem maximalen RMSE von 
0.275mm bei der Verwendung von mindestens zwei 
TLRK eine sehr geringe Abweichungsstreung besitzt. 
Eine Abweichungs- zuWellenlängenkorrellation kann 
jedoch nicht eindeutig festgestellt werden. Letztendliche 
ist das zentralperspektivische Abbildungsmodell für 
jedes Aufnahmesystem und damit in jedem verwendeten 
Wellenspektrum nutzbar.
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4 ZUSAMMENFASSUNG UND AUSBLICK

Die vorliegende Arbeit untersucht die 3D-Integration 
multispektraler Bilddaten in der forensischen 
Spurensicherung. Die forensische Fotografie nutzt 
verschiedene Wellenlängenbereiche, um latente 
Spuren, wie Hämatome, sichtbar zu machen, die 
im sichtbaren Spektrum nicht erkennbar sind. Um 
die Vorteile multispektraler 2D-Aufnahmen mit 
der Präzision und Messbarkeit von 3D-Scans zu 
kombinieren, wurde ein Ansatz entwickelt, der 
photogrammetrische Referenzkörper nutzt. Mittels eines 
Texturierungsprozesses werden die multispektralen 
2D-Aufnahmen auf das 3D-Modell projiziert, wodurch 
eine detaillierte und messtechnisch auswertbare 
3D-Darstellung des Spurenträgers entsteht.

Die Genauigkeit des Verfahrens wurde anhand von 
Tests mit verschiedenen TLRK-Anordnungen und 
Beleuchtungsszenarien evaluiert. Die Ergebnisse zeigen, 
dass bei Verwendung von mindestens zwei TLRK eine 
maximale Abweichung von unter 1mm erreicht wird, 
was im Bereich der forensischen Spurendokumentation 
als ausreichend präzise angesehen werden kann. Damit 
leistet der Beitrag einen wichtigen Anteil zur Entwicklung 
standardisierter Verfahren für die 3D-Integration 
multispektraler Bilddaten in der forensischen Praxis. 
Die vorgestellte Methode bietet ein vielversprechendes 
Werkzeug für die forensische Spurensicherung und 
-dokumentation und hat das Potenzial, die Beweisführung 
in Gerichtsverfahren zu stärken. 

Die Arbeit des Forschungsprojektes MultiForensic3D 
wird im Zuge der Bekanntmachung „Anwender – 
Innovativ: Forschung für die zivile Sicherheit II“ des 
Bundesministeriums für Bildung und Forschung (BMBF) 
im Rahmen des Programms „Forschung für die zivile 
Sicherheit“ der Bundesregierung gefördert.
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Abstract. In the presented paper, the author will 
examine and evaluate the latest 6-DoF camera localization 
techniques, with a particular emphasis on their suitability 
for use with historical photographs in urban environments. 
The objective is to identify a robust and adaptable 
pipeline that can be used on any historical photograph, 
even in the absence of known information about the 
photograph. The paper will commence with an overview 
of select papers from recent years on the general and 
historical localization of cameras. In order to gain insight 
into the requirements for historical photo localization, it is 
first necessary to analyze the inherent challenges of such 
a scenario. One promising approach is structure-feature-
based hierarchical localization with local learning tasks 
for the extraction and matching of robust and accurate 
features. Initially, a synthetic dataset will be employed to 
assess the viability of this approach, with the objective 
of eventually utilizing the findings for the implementation 
of a practical application for automated re-photography. 
Subsequently, the localization results from the proof of 
concept application will be evaluated using authentic 
historical photographs. The findings demonstrate that 
this structure-feature-based methodology can accurately 
establish correspondences in challenging scenarios. 
However, it is deficient in identifying structures in image 
pairs with minimal co-visibility. While this foundation 
is encouraging for automated localization of historical 
photographs, numerous enhancements could facilitate 
greater efficiency and adaptability to diverse scenarios.

1 INTRODUCTION

In recent years, the intersection of technology and 
history has opened new ways for experiencing and 
understanding our past. As we navigate the digital age, 
the concept of interactive history has emerged as a 
compelling approach to bring historical narratives closer 
to the public through Mixed Reality (XR). The combination 
of recent advancements in deep learning for computer 
vision (CV) tasks and the continual improvement of mobile 
device hardware has the potential to provide users with 
highly immersive experiences.

One common subject of analog historical exploration is the 
process of localizing a place from a historical photograph 
and attempting to reproduce a contemporary photograph 
from the exact same position and orientation. This practice 
is referred to as repeat photography (re-photography) [1] 
and results in two images that can be compared side-by-
side or even overlapped, thus immersing the viewer in 
the context. The practice of re-photography is ubiquitous 
across a range of media, industries, and motifs [2].

The presented paper demonstrates an attempt at fully 
automating the process through the use of a mobile app 
with a sophisticated structure-feature-based localization 
pipeline. To facilitate comprehension of the operational 
principles of 6-DoF camera localization, a concise 
overview of the fundamental concepts will be provided, 
followed by an examination of the prevailing approaches 
in the context of the challenges associated with the use of 
historical photographs in that process.

Keywords.  re-photography· pose estimation · camera 
localization · structure-from-motion
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An early form of photogrammetry has been introduced as 
early as the 1880s by Albrecht Meydenbauer [3]. Erwin 
Kruppa significantly contributed to the field with his 
foundational ground work for determining the epipolar 
geometry between two calibrated cameras with no more 
than five common correspondences in the early 1900s 
[4]. Throughout the 20th century, the computational 
capabilities of computers facilitated the digitization of data, 
enabling the creation of sophisticated algorithms that, by 
the turn of the 21st century, constituted a comprehensive 
photogrammetry pipeline for the purposes of localization 
and mapping. [5]. Classic structure-from-motion uses 
handcrafted feature detectors and descriptors like SIFT 
[CITE LOWE 2004] or ORB. The 2010s opened an exciting 
window of opportunity for alternative deep learning-
based approaches.

With regard to the subject of re-photography, and more 
particularly the utilization of historical images, a few 
digitization initiatives have been undertaken. However, 
there is as of yet no fully automated pipeline incorporating 
this. This may be due to a number of reasons, one of 
which being that this specific task is inherently difficult to 
generically implement. Another being, that arguably the 
main concept of re-photography is the freedom the user 
has in manually localizing a historical photo. In an early 
effort in 2010 Bae et al. present such a semi-automated re-
photography app that provides step-by-step guidance to 
the user in achieving the correct pose. The authors employ 
a combination of SIFT features and Approximate Nearest 
Neighbor in conjunction with a low ratio test threshold for 
robust feature matching and RANSAC foroutlier detection 
[6]. In a more recent attempt, students from the university 
of Osnabrück in Germany developed and An Interactive 
Web Application for the Creation, Organization, and 
Visualization of Repeat Photographs [1], [7]. The platform 
offers a method for interactive image registration and 
matching, while leaving the actual capturing of the re-
photography up to the user. In 2019 developed an app, 
that gives the user automated feedback about where 
to move next and how to rotate the camera to achieve 
the goal. As the authors describe efficiency and time 
cost as one of their requirements, they use binary ORB 
features which are faster to process. The use case of 
the app however, is to solve a typical problem of travel 
photography, where a photo with a motive ought to be 
retaken from the exact perspective, like family photos [8]. 
In a comprehensive study from 2022, the reader is given 
a detailed overview of the applications and techniques 
employed in re-photography. The authors conclude that 
further research is necessary to advance the field of 
automated re-photography, with particular attention to 
the potential of deep local features. In the development 

of such applications, future research should also prioritize 
the human-computer interaction component [2].

2 STATE-OF-THE-ART 6-DoF IMAGE-BASED CAMERA 
POSE LOCALIZATION

Localizing a camera pose with 6-DoF consists of finding 
all degrees of freedom in a 3D Cartesian coordinate 
system, which comprises of the position and orientation 
along the three axis respectively. Such pose estimators 
can generally be split into two main categories: structure-
based and regression-based [5]. Structurebased 
methods depend on a virtual 3D structure of the scene 
for localization, whereas regression-based methods 
predict a pose solely based on learning and optimization 
using deep neural networks.

Usually virtual 3D structure for localization is represented 
as a point cloud, which has been generated by using 
feature-based correspondences. The correspondences 
can either be matched directly from 2D features to 3D 
points or entirely through 3D points, or through hierarchical 
matching using image retrieval with “global” features or 
local features. Learning-based features have shown very 
promising improvements in accuracy and robustness 
over the years compared to handcrafted features [CITE]. 
On the side of regression-based pose estimators there 
are three major categories: absolute camera pose 
regression, relative – and scene coordinate regression.  

Absolute pose regression is an end-to-end deep learning 
approach for predicting the position and orientation of 
a camera pose within a given world coordinate system. 
Such pose regressors have proven to handle monocular 
images, image sequence auxiliary and even whole videos 
as input for localization. On the other hand, relative 
pose regression predicts the relative pose first, based 
on explicit retrieval or through a CNN using a geo-
referenced dataset for example. Due to being trained on 
general multi-unseen scenes, such regressors are more 
nscalable [5]. Scene coordinate regression predicts 3D 
coordinates directly from pixels in the query image. This 
way a dense correspondence mapping is calculated. 
However the authors state that SCR’s have “not yet 
proven their capacity to be as effective in large-scale 
scenes“ [5, p. 17].

In another paper from 2019, Shavit and Ferens present a 
similar categorization, but instead only distinct between 
end-to-end and hybrid deep pose estimation [9].
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2.1 CHALLENGES

Using historical photos for image-based computer vision 
tasks like localization introduces new challenges in 
addition to already common challenges of contemporary 
photos. Four major categories encapsulate all such 
challenges well: methodology, metadata, visual quality, 
environment.

Methodology  The availability of comprehensive 
historical datasets with consistent metadata is sparse. 
Many historical photos are yet to be digitized and labeled 
correctly which is an effort. Digitized historical photos 
in public archives often lack the option to be filtered 
correctly and private or paid archives have tedious 
licensing conditions to fulfill to be used for further 
processing. Nontheless, there have been initiatives to 
improve access to such datasets, like the I-Media- Cities 
[10] archive. In another effort an archive has been used 
together with content-based image retrieval with LEA 
and DELF to create a selected subset of parameterized 
valuable historical photos [11], [12].

Metadata Metadata for historical images, 
particularly intrinsic and extrinsic camera parameters, 
is often lost or not transferred, which poses challenges 
for computer vision tasks requiring calibrated cameras. 
During digitization, photo quality depends on the 
operator’s skills and equipment, leading to issues such 
as cropping, damage, or low resolution. Cropped images 
can shift the principal point, complicating automatic 
localization. Many historical images were captured 
with non-central principal points, and when camera 
parameters are unknown, estimation is necessary. 
Although parameters like skew and lens distortion are 
often negligible, they can enhance extrinsic parameter 
estimation. Selfcalibration methods, relying on vanishing 
points, offer limited accuracy with few images. Recent 
deep learning models, such as DEEPFOCAL, DeepCalib, 
and MLFocalLengths, predict focal lengths but are 
trained on contemporary datasets, highlighting the need 
for further research in historical contexts. Accurate 
focal length estimation is crucial for 6-DoF localization, 
as different focal lengths can yield similar images at 
different positions. [CITE]

Environment and Visual Quality   The environment 
can have a significant impact on the resulting visual 
quality of photos, especially when analog film has 
been treated improperly or the photographer lacked 
the skill to capture a qualitative photo. Furthermore, 
transient objects, repetitive patterns and texture-
less surfaces, illumination changes and other 
influences generally lead to an increased difficulty 
when trying to localize such historical photos. [CITE]  

2.2 DISCUSSION

While state-of-the-art camera pose regression for 
localization has not been researched yet, structure-
feature-based localization has already been achieved 
using learning-based features in an adapted structure-
from-motion (SfM) pipeline [11] with success. Learning-
based features have already shown their capabilities of 
being applied to multi-temporal photos [13] for detection, 
description and matching, where handcrafted features 
usually fail. State-of-the-art structure-feature based 
localization techniques may even outperform end-to-
end regression-based localization [5]. This advantage 
may be due to the scene geometry being retained, 
which is not the case with fully predicted poses [9]. One 
implementation that stands out in challenging datasets, 
delivering robust and accurate results efficiently is HF-
Net, a hierarchical localization pipeline using the coarse-
to-fine strategy combined in a joint network [14]. This 
localization strategy can also be observed when using 
global and local features in order sequentially, which is 
what the authors used as an inspiration. When compared 
to such a pipeline using NetVlad+SuperPoint+SuperGlue 
(global -, local features and matching) HF-Net showed 
significant efficiency improvements, but also a slight 
decrease in accuracy. Although this approach relies on 
features, which generally are prone to errors when dealing 
with little co-visibility, SuperPoint features have already 
shown their capabilities of handling such scenarios well 
[CITE]. Furthermore, hierarchical localization employs 
2D-3D matching, meaning features on a historical 
photo could be matched against an existing point cloud 
extracted from contemporary images.

3 MOBILE PROOF OF CONCEPT APPLICATION FOR 
HISTORICAL PHOTOS

In order to show compelling real world historical photo 
localization examples, a proof of concept mobile AR 
application will be developed. The app will encompass an 
automated hierarchical localization pipeline consisting of 
four steps: (1) acquiring of auxiliary contemporary photos 
and their respective real world coordinates t acting as 
ground truth, (2) generating a reference frame containing 
the estimated camera poses of both the historical and 
auxiliary photos with position t and orientation q, (3) 
importing the transformed estimated camera poses and 
ground truth camera poses into the real world coordinate 
system, (4) applying Helmert transformation to align both 
estimated and ground truth camera poses to receive 
the real world camera pose of the historical photo (see 
Figure 1). The Helmert transformation is a specific case 
of a similarity transformationmentioned commonly 
used in geodesy for transforming geodetic coordinate 
systems[11], [12 ].
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3.1 SYNTHETIC DATASET PRE-EVALUATION

In order to choose the best feature-based matching 
using hierarchical localization, a preliminary evaluation 
has been conducted using a custom synthetic dataset 
[CITE dieses SfM paper?]. The comparative analysis 
will use two different base-localization approaches: an 
extended SfM pipeline using learning-based features 
(similar to [11]) and the full hierarchical localization using 
2D-3D matching. 

(a) Comparison of feature pipelines for full Hierarchical 
Localization (red) and only SfM Hierarchical Localization 
(blue) on synthetic photogrammetry localization datasets. 
Each symbol displays a weighted error sum from a 
different feature pipeline for the localized historical photo 
camera pose. The errors are calculated as a weighted 
sum from the translation and rotation error. The lower the 
error, the better the pipeline localization pose. Only inliers 
with a summed error of below 50 are shown.

𝐸 = 0.25 · 𝐸 𝑡 + 0.75  ·  𝐸 𝑟

Fig. 1: Proposed automated hierarchical localization 
pipeline for proof of concept app

Fig. 2: Results of preliminary 
evaluation

(1)

Both methods will be run with the same set of feature 
pipelines with the most promising results for historical 
photos based on previous benchmarks and analysis 
[CITE]. Figure 2a shows these results as a weighted error 
sum of the rotation error 𝐸 𝑟 and translation error 𝐸 𝑡. The 
translation error is weighted less due to it being less 
impactful on the finally matched images and possibly 
inaccurately selected focal lengths (see Equation 1). 
Figure 2b shows the visual result of the best feature 
pipeline for both localization approaches.

Against expectations, the SfM pipeline 
performs similar or better than the hierarchical 
localization (hloc) pipeline on the synthetic 
dataset of historical photos. Neither method is 
able to successfully localize the Chateu1 subset 
due to the challenging matching scenario. In 
the other two Chateu subsets, hloc seems to 
be estimate a more stable focal length leading 
to the assumption of also delivering more 
accurate localizations due to the historical 
photos in that subset likely being captured by 
the same camera. The visual analysis suggests 
all other localizations may be correct. However, 
some estimated pose positions are beneath 
the ground plane, suggesting the cause to 
be an inaccurately estimated focal length. 

SuperPoint+LightGlue prevails as the feature pipeline 
delivering the most accurate results and will thus be used 
in the app.

(b) Composition of the 
superimposed 3D model 
from the view of the localized 
historical camera pose for each 
best performing pipeline for 
full hierarchical localization and 
SfM localization together with 
the estimated focal length in 
millimeters.
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3.2 WORKFLOW AND APP NAVIGATION

The user starts by establishing a tracking context through the  
AR Foundation framework. The user then proceeds to 
create a localization context and uploading a historical 
photo to be localized in the first step. Afterwards, the 
ground truth poses are captured by walking around and 
manually pressing a trigger. The localization can then be 
initialized and started. Once the pose has been localized 
in the backend, the bottom drawer extends, showing 
additional adjustments for the pose. Such options include 
the adjustment of the focal length, the view frustum size 
of the spatial 3D photo and an option to level out the 
pose to eye level, reset it, or repeat the localization with 
the existing context. In the last step, the user can persist 
the pose with all necessary information. Currently the 
poses are only persisted throughout the session, but in 
the future AR anchor-based persistence could be used. 
 

(a) establishing tracking context from scanning environment  
(b) start localization by uploading historical photo to be 
localized 
(c) started localization with feedback about progress 
(d) localized camera pose settings in an extended drawer and 
the marker with distance to the localized pose 
(e) successfully localized camera pose without transparency

higher focal length. Localization B initially failed due to 
insufficient image correspondences but succeeded on 
a subsequent attempt with height adjustments. The 
Helmert transformation achieved an average alignment 
error of 14.38 cm, though Exhibit F had a 40 cm deviation, 
which was minimal given the large-scale scene. Feature 
matching using SuperPoint+LightGlue was effective 
under strong illumination but struggled with single-
plane correspondences, impacting accuracy in some 
cases. Automated re-photography showed potential by 
accurately localizing photos in overgrown areas where 
manual matching was impossible.

Fig. 3. Proof of concept app localization process

3.3 EVALUATION AND DISCUSSION

The evaluation with real world examples uses seven 
exhibits (numbered A-G), ranging from 1906 to 1987. All 
query photos use a single grayscale channel. Localization 
typically required approximately 6.28 minutes, utilizing an 
average of 15 auxiliary images and one historical photo 
per attempt. The effort and duration increased with the 
number of input images. Notably, Localization run C was 
faster by reusing the previous tracking context, which 
enhanced both performance and precision.

Most localization attempts were successful except 
for runs A and B. Localization A matched the historical 
photo but had significant positional errors due to 
the large scene scale, limited camera spread, and 
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The results demonstrate that hierarchical localization 
combined with Helmert transformation effectively 
localizes historical photographs with reasonable 
accuracy. The success of Localization run C highlights 
the benefits of reusing tracking contexts, which improves 
both speed and precision by maintaining consistency in 
tracking data. However, challenges remain, particularly 
with feature correspondences limited to single planes, 
leading to misalignments in localized poses. This issue 
is evident when matching features from facades without 
sufficient overlap in other regions, resulting in peripheral 
misalignments.

(a) (b) (c) C

(d) D (e) D ** (f) E

(attempt 2) (attempt 2) **
B B

Tab. 1: Summary of all localization runs in the PoC app for 
historical photos from the test dataset with their exhibit. 
This table shows the number of auxiliary images used for 
that localization, the duration from app start to localized 
pose, the number of inliers in relation to the total number 
of feature matches across all images and the average 
position offset between ground truth and estimated 
poses after the transformation has been applied.

Exhibit Auxiliary
Images

Duration (min) Inliers Avg. Transform
Offset (cm)

A 13 06:10 508/541 14.06

B 17 07:20 13/21 11.38

B (attempt 2) 16 06:50 110/307 16.85

C 14 03:50 292/520 9.49

D 11 07:13 573/788 12.22

E 12 04:40 108/197 5.54

F 20 08:12 825/881 39.94

G 18 07:36 122/659 5.59

Fig. 4: All successful localization runs displayed as spatial 
photos in the proof of concept app with** and without 
transparency

(g) E ** (h) G (i) G **

The Helmert transformation proved reliable for pose 
alignment, maintaining low average errors even in large-
scale scenes. Nonetheless, certain cases like Exhibit F 
indicate that deviations can occur, although they remain 
acceptable within the context of expansive environments. 
The feature matching pipeline demonstrated robustness 
under strong lighting conditions but was less effective 
when image pairs lacked sufficient co-visibility, 
emphasizing the need for diverse and overlapping 
features in both historical and auxiliary images.

Automated re-photography emerged as a promising 
approach for relocalizing historical photos in challenging 
environments, where manual matching is infeasible. This 
automation leverages auxiliary images with clear views 
of the objects of interest, enhancing the app’s ability 
to accurately determine original photograph positions. 
However, scalability remains a concern due to the 
timeconsuming nStructure from Motion (SfM) component 
and the substantial storage required for auxiliary and 
ground truth data.
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Future improvements should focus on reducing 
pipeline redundancies and enhancing feature matching 
confidence to handle a broader range of historical 
photos. Such improvement may include the usage of 3D 
tracking data directly and incoperating it into the 2D-3D 
matching process and running localization entirely on 
the phone with HF-Net directly. Exploring feature-less 
matching methods could also address limitations related 
to single-plane correspondences. Future work should also 
explore the capabilities of pose regressors for historical 
photos. Additionally, optimizing storage solutions and 
enabling simultaneous localization of multiple photos 
would enhance the system’s scalability and practicality 
for real-world applications. Addressing these technical 
challenges is essential for advancing the accuracy and 
efficiency of historical photo localization in diverse and 
large-scale environments.

4 CONCLUSIONS

Acknowledgments. The original paper has been written 
as a master thesis at the University of Applied Sciences 
(HTW) Berlin.
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Zusammenfassung: Bei der targetbasierten 
multimodalen 2D- und 3DSensorkalibrierung werden meist 
ebene, oft modenspezifische Kalibrierobjekte (Targets) 
verwendet, die vor einer Bildsensoranordnung orthogonal 
positioniert werden müssen. Diese Vorgehensweise stellt 
im Fall eines gemeinsam genutzten Kalibrierobjekts 
jedoch eine Herausforderung dar, da die einzelnen 
Bildgebungen oft individuell deutlich zum Target geneigt 
sind. Der vorliegende Beitrag widmet sich der Konzeption 
und Umsetzung eines modularen, multimodal nutzbaren 
Targets, mit dem dieses Problem überwunden, die 
allgemeine Kalibrierungsgenauigkeit verbessert und der 
multimodale Kalibrierprozess vereinfacht werden soll. Das 
vorgeschlagene Target integriert mehrere Funktionen, um 
eine Nutzung durch verschiedene Bildgebungsverfahren, 
z.B. RGB, TOF, Thermografie, sowohl für die intrinsische 
als auch die extrinsische Kalibrierung zu ermöglichen. 
Es umfasst planare Muster, geometrische Elemente und 
modulare 3D-Primitive, die am Target angebracht oder 
von ihm entfernt werden können, um ausreichende, 
robuste und betrachterunabhängige geometrische 
Merkmale für verschiedene Arten der Bildgebung zu 
bieten. Die Targetmodularität ermöglicht die gleichzeitige 
Kalibrierung von 2Dund 3D-Sensorsystemen 
verschiedener Bildmodalitäten und löst damit die üblichen 
Herausforderungen bei der multimodalen Datenfusion 
und Sensorausrichtung. Der Beitrag beschreibt die 
Konstruktionsprinzipien eines multimodalen Targets und 
demonstriert die Anwendung des Targets innerhalb einer 
automatisierten Kalibrierungspipeline für die extrinsische 
Kalibrierung von multimodalen Kamera-Setups.

1 MOTIVATION

Die zunehmende Integration verschiedener bildgebender 
Sensortechnologien in modernen technischen Systemen 
erfordert präzise und effiziente Kalibrierungsmethoden, 
um geometrische Bezüge zwischen den erfassten 
Daten herstellen und nutzen zu können. Traditionelle, 
targetbasierte Ansätze sind allgemeiner Stand der 
Technik, aber für spezifische Bildgebungen optimiert. 
Aktuelle Entwicklungen in der targetlosen geometrischen 
Kalibrierung, insbesondere auch KI-basierte Ansätze, 
bieten vielversprechende neue Möglichkeiten der 
Nutzung auch für unterschiedliche Bildprinzipien, können 
häufig aber nur der Nachführung einer klassischen 
initialen Kalibrierung dienen.

Abb. 1: Prinzip der multimodalen Sensordatenfusion 
durch extrinsische geometrische Kalibrierung von 
bildgebenden RGB-, Infrarot- und 3D-Sensoren.
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Vor dem Hintergrund eines steigenden Bedarfs an 
universellen, multimodal nutzbaren Kalibrierlösungen 
widmet sich dieser Beitrag der Entwicklung und 
Implementierung eines Kalibrierverfahrens für 
die gleichzeitige extrinsische Kalibrierung von 
unterschiedlichen 2D- und 3D-Bildgebungsprinzipien. 
Eine präzise extrinsische Kalibrierung ist erforderlich, 
um die relative Lage (Pose) der Sensoren in der Welt 
und zueinander korrekt zu bestimmen. Hierzu ist ein 
spezielles Target zu entwerfen, das für alle Bildgebungen 
geeignet ist. Die Eignung beinhaltet die Bereitstellung 
von nutzbaren Merkmalen in Targetabbildern in einer 
hinreichenden Zahl, um eine präzise Kalibrierung zu 
ermöglichen. Von diesen Anforderungen werden die 
Gestaltungsmöglichkeiten des Targets und die Auswahl 
von und Verbindung mit nutzbaren Algorithmen 
zur Bildauswertung und Kalibrierung bestimmt. 
Die besondere Herausforderung liegt in einem 
Targetentwurf, das für verschiedene Sensormodalitäten, 
d.h. für optische (VIS, NIR, MWIR, LWIR - aktiv und 
passiv) und geometrische Szenenmerkmale, z.B. RGB-
Kameras, Time-of-Flight-Sensoren, einsetzbar ist. Jeder 
Sensortyp stellt hinsichtlich Materialwahl, geometrischer 
Gestaltung und Oberflächenbeschaffenheit ganz 
spezifische Anforderungen an das Target. Insbesondere 
die Kalibrierung von Sensoren, die die thermische 
Emission von Objekten bildgebend erfassen, erfordert 
spezielle Lösungen, da konventionelle optische Muster in 
Wärmebildern nicht erkennbar sind.

Der Beitrag ist gegliedert in Überlegungen zur 
Gestaltung und Konstruktion eines multimodalen Targets 
und die Diskussion der softwareseitigen Umsetzung 
eines Kalibrierverfahrens unter Berücksichtigung 
spezieller Aspekte der verwendeten Geometrien der 
Targetelemente. Er schließt mit einer Zusammenfassung 
und Erläuterungen zur Umsetzbarkeit in konkreten 
Anwendungen.

2 TARGETGESTALTUNG

Targetbasierte geometrische Kalibrierverfahren 
dominieren nach wie vor in Anwendungen, die hohe 
Genauigkeiten der aus den Bildgebungen abzuleitenden 
geometrischen Szeneninformationen erfordern. 
Typischerweise werden für optisch remissionsbasierende 
Bildgebungsprinzipien planare Targets mit Schachbrett- 
oder ChArUco-Mustern eingesetzt. Diese Methoden 
sind zwar etabliert und mathematisch fundiert, stoßen 
jedoch bei der Integration weiterer Sensormodalitäten 
an ihre Grenzen. Insbesondere die Einbeziehung der 
für eine thermische Kalibrierung häufig notwendigen 
beheizten Kalibrierkörper erhöhen die Komplexität 

und Kosten des Kalibriervorgangs erheblich. Das 
in diesem Beitrag vorgestellte Konzept eines 
modularen, multimodalen Targets soll die Nutzbarkeit 
unterschiedlicher Targeteigenschaften flexibel und 
kostengünstig in sich vereinen. Die Grundlage bildet eine 
Basisplattform aus einem Aluminium- Verbundwerkstoff, 
die ein integriertes 2D-ChArUco-Muster für die 
grundlegende optische Kalibrierung enthält. Weiterhin 
sind 2D-geometrische Elemente integriert. Die 
Plattform verfügt über definierte Aufnahmepunkte, an 
denen weitere 3D-Primitive montiert werden können.  
 
Die geometrischen Primitive, hauptsächlich Kugeln und 
Zylinder, können anwendungsspezifisch bedarfsgerecht 
(Formen, Größen und Materialien) mittels additiver 
Fertigung hergestellt werden. Diese Fertigungsmethode 
ermöglicht eine kostengünstige und präzise Produktion 
bei gleichzeitig hoher Flexibilität im Design. Als 
Primärelemente dienen Kugeln, die durch ihre Geometrie 
eine weitestgehend winkelunabhängige Erkennbarkeit 
gewährleisten. Die Kugelzentren können geometrisch 
durch drei Parameter beschrieben und validiert werden: den 
Radius, den Abstand zur Grundebene sowie die Abstände 
zu benachbarten Kugeln. Für die extrinsische Kalibrierung 
mit Thermographiekameras im Sensorverbund können 
einfache Heizelemente in die Kugeln integriert werden. 
Das Material und die Oberflächeneigenschaften lassen 
sich kooperativ anpassen. Ergänzend aufgebrachte 
Zylindergeometrien als Sekundärelemente erlauben eine 
präzise Achsendefinition und können zur Validierung der 
Kugelzentren dienen.

3 ALGORITHMISCHE UMSETZUNG DER 
MULTIMODALEN KALIBRIERPIPELINE

3.1 TARGETAUSWERTUNG UND EXTRINSISCHE 
KALIBRIERPIPELINE FÜR OPTISCHE VIS-MWIR-
SENSOREN

Für den visuellen Spektralbereich wird eine 
Posenerkennung per planarem Target mit ChArUco-
Mustern verwendet. Automatisch erkannte Marker mit 
einem bei ZBS umgesetzten Verfahren sind in Abbildung 3 
dargestellt. Diese Muster können auch zur gleichzeitigen 
intrinsischen Kalibrierung der Bildgebung verwendet 
werden. Hierfür müssen mehrere Posen aufgenommen 
werden.
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Abb. 2: Prototypischer Aufbau eines multimodalen 
Single-Shot-3DSensorsystems des ZBS e.V. (links) mit 
Beispielaufnahme einer RGBattributierten 3D-Punktwolke 
nach geometrisch extrinsischer Kalibrierung (rechts). 
Die 3D-Rekonstruktion erfolgt hier aktiv mit flächiger 
Musterprojektion und einer Kamerabeobachtung (Single-
Shot). Die RGB-Kamera zur multimodalen Ergänzung der 
3D-Daten ist in der Mitte installiert.

Abb. 3: Multimodales Target mit acht Kugelelementen 
unterschiedlicher Größe und Farbe (links). Die Kugeln 
wurden aus mattem PLA im 3D-Druckverfahren 
hergestellt. Ergebnis der Sphärendetektion aus einer 
3D-Punktwolke eines prototypischen Single-Shot-3D-
Sensorsystems des ZBS e.V. (rechts).

3.2 TARGETAUSWERTUNG UND EXTRINSISCHE 
KALIBRIERPIPELINE FÜR THERMOGRAPHISCHE 
SENSOREN

Für den thermographischen Spektralbereich wurde ein 
spezieller Ansatz entwickelt, bei dem die Kugeln mit 
elektronischen Heizelementen ausgestattet sind. Eine 
individuelle Temperierung jeder Kugel ermöglicht die 
zuverlässige Detektion und insbesondere eindeutige 
Identifikation bei unterschiedlichen Targetposen im 
Wärmebild (siehe Abbildung 4). Zusätzliche geometrische 
Elemente auf dem planaren Target (Bohrungen) 
ermöglichen optional eine Genauigkeitssteigerung 
der Auswertungen im Fall nahezu senkrechter 

Ausrichtungen der Kamera zum Target. Die 
Bohrungssegmente können aufgrund der 
natürlichen Temperaturunterschiede des 
Targets zum Umfeld leicht detektiert werden.  
 
Ein fundamentales Problem bei der 
Verwendung von Kugeln als Kalibrierobjekt ist 
die perspektivische Projektion, da eine Kugel 
in der Bildebene stets als Ellipse abgebildet 
wird. Der typischerweise zur Kalibrierung 
verwendete Schwerpunkt der Kugelprojektion 
(Ellipsensegment), der wegen seines integralen 

Charakters zur genauen Strukturortbestimmung genutzt 
werden kann, entspricht im Allgemeinen nicht der 
Projektion des Kugelmittelpunkts. Der ansichtsabhängige 
systematische Fehler, der entsteht, weil der Sehstrahl 
durch den Ellipsenschwerpunkt nicht durch den 
tatsächlichen Kugelmittelpunkt verläuft, muss für 
die Nutzung des Targetabbildes für Kalibrierzwecke 
korrigiert werden [3]. Die Größe dieser Abweichung 

hängt vom Blickwinkel und der radialen Position 
im Bild ab. Auf dieser Grundlage wurde ein 
eigenes Korrekturverfahren entwickelt und in die 
Verarbeitung der Targetdaten einbezogen.

Die Posen-Erkennung für die Thermographiekamera 
erfolgt in mehreren Schritten:

1. Ellipsen-Korrektur: Für die perspektivische 
Abbildung von Kugeln wird eine systematische 
Korrektur der projizierten Zentren vorgenommen. 
Der entwickelte Algorithmus modelliert und 
korrigiert die geometrische Beziehung zwischen 

der tatsächlichen Kugelposition und ihrer elliptischen 
Projektion in der Bildebene. Diese Korrektur ist 
besonders wichtig bei größeren Blickwinkeln und bei 
Kugelpositionen am Bildrand, wo die perspektivischen 
Einflüsse am stärksten ausgeprägt sind.

2. Blob-Detektion: Die Abbilder der erwärmten Kugeln 
werden im geometrisch korrigierten Wärmebild 
mittels OpenCV-Blob-Detector [2] lokalisiert. Durch 
die unterschiedlichen Temperaturniveaus der 
einzelnen Kugeln wird eine eindeutige Zuordnung 
und Unterscheidung im Targetabbild ermöglicht.

3. Pose-Estimation: Mit den korrigierten Bildpunkten 
und ermittelten geometrischen Parametern 
der geometrischen Primitive wird mittels 
solvePNPAlgorithmus [2] die finale Pose des Targets 
bestimmt.
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Abb. 4: Targetaufnahme mit Thermographiekamera 
TOPDON TS001: Abbild einer aktiv erwärmten Kugel auf 
einer Aluminiumplatte (links) und Abbild des Targets mit 
Bohrungen und erwärmten Kugeln (rechts)

3.3 TARGETAUSWERTUNG UND EXTRINSISCHE 
KALIBRIERPIPELINE FÜR 3D-SENSOREN

Die Verarbeitung von erfassten 3D-Punktwolkendaten 
eines intrinsisch kalibrierten 3D-Sensoren erfolgt 
in mehreren aufeinanderfolgenden Schritten, 
die eine robuste Erkennung und geometrische 
Positionsbestimmung der Kalibrierelemente ermöglichen:

1. Initiale Segmentierung: Mittels DBScan-
Algorithmus [1] wird die Punktwolke in einzelne 
zusammenhängende Objekte segmentiert. Dieser 
dichtebasierte Ansatz ermöglicht eine effektive 
Trennung der geometrischen Primitive voneinander 
und vom Hintergrund.

2. Geometrische Filterung: Die segmentierten 
Objekte werden anhand ihrer Größenordnung und 
geometrischen Eigenschaften gefiltert. Insbesondere 
wird für potenzielle Kugelsegmente überprüft, ob 
ihre Punktverteilung mit dem bekannten Radien des 
Targets kompatibel sind.

3. Parameterextraktion: Für die gefilterten Segmente 
erfolgt eine Parameterbestimmung mittels RANSAC-
Verfahren und anschließender Least-Squares-
Optimierung. Dabei werden geometriespezifisch 
folgende Eigenschaften ermittelt, z.B.: 
– für Kugeln: Mittelpunktkoordinaten und Radius 
– für Zylinder: Achsenrichtung, Radius und Länge 
–  ergänzend: Parameter der Basisebene, falls diese  
    im Sichtfeld liegt

4. Modellvalidierung: Die extrahierten Parameter 
werden anhand der bekannten Target-Geometrien 
im Targetaufbau validiert: 
– bei Kugeln: Abstände zwischen    
   Kugelmittelpunkten, Radien der Kugeln, Abstände          
   zur Basisebene (falls sichtbar) 
– bei Zylindern: Durchmesser und Länge 
– bei Ebenen: Ausrichtung und Ebenheit

5. Iterative Optimierung: Mittels RANSAC werden 
die Parameter solange optimiert, bis entweder die 
Abweichungen unter einen definierten Schwellwert 
fallen oder eine maximale Iterationszahl erreicht 
ist. Dies gewährleistet eine robuste, schnelle und 
genaue Anpassung, auch bei verrauschten Daten 
und vermeidet Overfitting.

6. Pose-Estimation: Die finale Transformation 
wird durch Least-Squares- Registrierung nach 
Umeyama [4] bestimmt. Dabei werden z.B. 
gemessene Kugelmittelpunkte mit dem Target-
Modell in Übereinstimmung gebracht. Die eindeutige 
Zuordnung der Korrespondenzen wird durch 
Referenzkugel ermöglicht.

Die dargestellte Pipeline ermöglicht die robuste 
Erkennung der Target-Pose auch unter schwierigen 
Bedingungen des praktischen Einsatzes, wie partieller 
Verdeckung oder unterschiedlichen Aufnahmewinkeln 
unterschiedlicher Targetposen zum Kamerasetup.

Die Kalibrierung und Posen-Erkennung von bildgebenden 
3D-Sensoren bietet bei senkrechter Ansicht zum 
Target, wie in Abbildung 3 dargestellt, im Vergleich zu 
einem konventionellen planaren Target zunächst keine 
signifikanten Vorteile. Im Gegenteil: Die Kugelelemente 
können sogar die Erfassung der planaren Geometrie 
erschweren, da sie relevante Bereiche verdecken. Die 
besonderen Stärken des entwickelten Targets zeigen 
sich jedoch bei der Posen-Erkennung auch unter 
extremen Winkeln. Abbildung 5 demonstriert dies anhand 
einer normalerweise ungebräuchlichen Seitenansicht auf 
das Target. Durch die beidseitige Anordnung der Kugeln 
am Target kann der ursprüngliche Modellparameter 
„Abstand zur Ebene“ durch den „Abstand zwischen den 
Kugelreihen“ ersetzt werden. Selbst die im Hintergrund 
befindlichen Kugeln, die aufgrund der perspektivischen 
Ansicht deutlich weniger Messpunkte aufweisen als 
die sechs Kugeln im Vordergrund, können von noch 
zuverlässig erkannt und in die Modellberechnung 
einbezogen werden. Diese Robustheit bei extremen 
Aufnahmewinkeln stellt einen entscheidenden Vorteil 
dieses Targets gegenüber herkömmlichen planaren 
Targets dar.
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Abb. 5: Multimodales 2D-/3D-Target mit 8 Kugeln in 
Seitenansicht senkrecht zur Ebenennormalen (links). 
Rechts dargestellt ist die 3D-rekonstruierte Szene aus 
Sicht der 3D-Modalität.

4 ZUSAMMENFASSUNG UND AUSBLICK

Das vorgestellte modulare multimodale Target 
demonstriert mehrere entscheidende Vorteile für die 
praktische Anwendung in der geometrischen Kalibrierung 
von multimodalen Kamerasetups. Die Einbeziehung der 
Bedürfnisse verschiedener Sensormodalitäten in die 
Targetgestaltung resultiert in einem vielseitig nutzbaren, 
flexiblen Design, das sowohl für RGB-Kameras, 
Thermographiekameras als auch 3D-Sensoren geeignet 
ist. Das ChArUco-Muster erlaubt die präzise Kalibrierung 
optischer Sensoren, während die ebenen geometrischen 
Elemente und die optional beheizbaren Kugelelemente die 
thermographische Bildgebung unterstützen. Gleichzeitig 
dienen die geometrischen 3D-Primitive der robusten 
Posen-Erkennung mit 3D-Modalitäten.

Ein besonderer Vorteil des Targetkonzeptes liegt in 
seiner modularen Bauweise, die ein schnelles Um- und 
Nachrüsten ermöglicht. Die einzelnen Komponenten 
können je nach Anwendungsfall flexibel montiert oder 
demontiert werden, was die Anpassung an verschiedene, 
wechselnde Kalibrierszenarien vereinfacht. Dabei 
gewährleistet die standardisierte Befestigung eine 
präzise und reproduzierbare Positionierung der Elemente.

werden. So können beispielsweise Strukturen für 
die Integration von Heizelementen oder spezielle 
Oberflächeneigenschaften direkt im Druckprozess 
realisiert werden. Diese Flexibilität trägt wesentlich 
zur Praktikabilität und Weiterentwicklungsfähigkeit 
des Targets bei. Das beschriebene Verfahren und 
die algorithmische Umsetzung einer multimodalen, 
automatisierten Kalibrierpipeline berücksichtigt 
modenspezifische Besonderheiten des Targets 
und Targetabbildes. Im Beitrag wurden Vorschläge 
zur Gewährleistung hoher Genauigkeiten der 
Targetauswertung gemacht. Eine quantitative Validierung 
der Kalibriergenauigkeit mit realen Sensorsystemen stellt 
eine besondere Herausforderung dar, da ein direkter 
Vergleich mit konventionellen Targets und Verfahren 
durch die fehlende Ground-Truth-Referenz erschwert 
wird. Dies betrifft insbesondere 3D-Sensoren, bei denen 
die Schaffung reproduzierbarer Vergleichsbedingungen 
aufgrund systeminhärenter Messunsicherheiten und 
unterschiedlicher Messprinzipien nur eingeschränkt 
möglich ist. Um dennoch eine objektive Bewertung 
verschiedener Kalibrierverfahren zu ermöglichen, wird 
aktuell an einer Simulationsumgebung gearbeitet, 
die sowohl idealisierte als auch realistische 
Sensoreigenschaften verschiedener Modalitäten 
abbilden soll. Diese ermöglicht zukünftig systematische 
Vergleichsstudien unter kontrollierten Bedingungen.

Mit dem Ergebnis der Arbeiten stehen potentiellen 
Anwendern multimodaler Kamerasetups Hardware- und 
Software-Werkzeuge des ZBS e.V. (3D-EasyCalib[5]) zur 
Verfügung, welche die Erzeugung korrekt fusionierter 
multimodaler Bilddaten für weiterführende Bildanalysen 
ermöglichen.
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Abstract. This paper presents a depth completion 
method inspired by colorization, utilizing sparse depth 
data captured by solid-state LiDAR sensors, namely 
the Cepton Vista-P60 and the Livox Mid-100. Existing 
state-of-the-art methods for depth completion have 
primarily focused on Velodyne datasets featuring a 
nearly homogeneous sampling pattern in the horizontal 
direction. Our paper aims to achieve depth completion for 
inhomogeneous sampling patterns, making it applicable 
to a broader range of scenarios. To facilitate research 
in this domain, we introduce a comprehensive dataset 
consisting of consecutive sparse data measurements. 
The dataset is split into training, validation, and testing 
data. Ground truth data is generated by integrating 
multiple time frames. Our dataset allows for the evaluation 
of algorithms specifically tailored for solid-state LiDAR 
sensors. Both the implemetation and the dataset are 
publicly available. The implementation is available at

https://github.com/lyysl/Depth-Completion-through-
Colorization.

Dataset is available at

https://www.kaggle.com/datasets/liyingyinsimon/solid-
state-lidar.

1 INTRODUCTION

LiDAR technology offers significant advantages for 
various applications due to its ability to measure distances 
accurately using emitted light. It may operate effectively 
at obscure vision conditions and provides rapid data 
acquisition. However, LiDAR data is often sparse and 
does not fully sample the field of view (FOV). This sparsity 
poses challenges because conventional computer vision 
algorithms require dense data to function effectively. 
Therefore, depth completion [1, 2], which estimates 
depth information for all pixels in a sparse depth image, 
is essential for leveraging the full potential of LiDAR in 
computer vision tasks. Among the various types of LiDAR 
[3, 4] sensors, solid-state LiDAR [5, 6] technology is 
rapidly gaining traction as a promising solution. These 
sensors offer a potentially higher update frequency 
and angular resolution when compared to traditional 
mechanical LiDAR sensors. Moreover, solid-state 
LiDARs have already demonstrated their value as cost-
effective and lightweight alternatives to the traditional 
mechanical LiDAR sensors [7]. Furthermore, solid-state 
LiDAR technology enhances resistance to vibrations as 
it eliminates the need for rotating mechanical structures.  
 
The process of depth completion usually involves 
projecting a sparse 3D point cloud onto a 2D space. Within 
these 2D sparse depth scenes, missing depth values 
need to be accurately estimated. The core objective 
of depth completion is to predict a dense depth image 
from the provided sparse depth data. For this study, we 
exclusively utilize sparse depth data as input.

To quantitatively assess the efficacy of depth completion 
results, ground truth data becomes essential. However, 
manually annotating ground truth data can be a laborious 
and challenging task. To address this, we obtain ground 
truth data for our solid-state LiDAR dataset by integrating 
multiple scans from the same scene, assuming the 
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scenes remain static during the data acquisition process. 
This approach ensures a reliable and comprehensive 
evaluation of our depth completion method.

We outline the main contributions of this paper as follows:

• We present a novel dataset comprising Cepton 
Vista-P60 and Livox Mid-100 LiDAR data, along 
with corresponding ground truth information. This 
dataset serves as a valuable resource for training 
and evaluating methods designed to process sensor 
data from the Cepton Vista-P60 and the Livox Mid-
100 LiDAR sensor.

• We propose a depth completion method by solving a 
sparse matrix equation using only sparse depth data. 
Also, we evaluate the depth completion results using 
different time integrations.

• We evaluate various state-of-the-art approaches 
for depth completion on this dataset. We assess 
the proposed algorithm to gauge its potential for 
utilization with the Cepton Vista-P60 and Livox Mid-
100 LiDAR sensors.

This work is structured as follows. Section 2 addresses 
related work on depth completion and solid-state 
LiDAR. Section 3 proposes a depth completion method 
using sparse depth images. Section 4 describes a new 
solid-state LiDAR dataset and presents experimental 
evaluations using different algorithms. Finally, Section 5 
provides a summary of the paper.

2 RELATED WORK

In this section, we present an overview of the state-
of-the-art methods for depth completion, focusing on 
their utilization of sparse depth data as inputs. With 
the growing prominence of LiDAR sensors in the field of 
autonomous driving [8], these algorithms have gained 
popularity and widespread attention. The evaluation of 
such algorithms has conventionally relied on benchmark 
datasets like KITTI [9, 10], which incorporate the use 
of the Velodyne HDL-64E LiDAR sensor. Our paper 
introduces a diverse set of algorithms, including both 
neural network-based and non-neural network-based 
approaches. These algorithms are employed to assess 
and compare their performance using the dataset we 
have provided. Additionally, the integration of solid-state 
LiDAR technology offers new opportunities for enhancing 
depth completion methods, which we explore in this study.  
 
Compressed Sensing (CS) [11] addresses the 
reconstruction of sparse signals from limited 

measurements, formulated as an optimization problem 
with an L1 norm constraint. The Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [12] effectively solves 
for the compressed sensing problem. Sparsity Invariant 
CNNs (SI-CNN) [10] utilize sparse convolution to process 
sparse depth maps, enabling the network to produce 
dense depth maps as outputs. The sparse convolution 
layer consists of three main operations: elementwise 
multiplication with a binary mask, convolution with the 
same padding, and normalization.

Fast Depth Completion on the CPU (IP-Basic) [13] 
is a non-neural networkbased approach. Classical 
image processing algorithms are employed for fast 
depth completion on the CPU. Techniques including 
depth inversion, dilation, hole closure, and blur 
operations achieve impressive speed and performance, 
outperforming some neural network-based methods.  
 
Deep Convolutional Compressed Sensing (DCCS) [14] 
combines compressed sensing and deep learning for 
depth completion using sparse depth measurements. 
Built upon the Alternating Direction Neural Network 
(ADNN) [15], this framework leverages compressed 
sensing techniques for reconstructing sparse signals, 
applicable to depth map reconstruction from sparse data.

A probabilistic normalized convolutional neural network 
(pNCNN) has been proposed in [16]. The normalized 
convolution learns to operate only on confident points to 
avoid calculations from missing and noisy measurements. 
Additionally, the normalized convolutional network, within 
the proposed probabilistic framework, also provides a 
meaningful output uncertainty measure.

A non-learning depth completion method has been 
proposed in [17] with the underlying assumption that 
unobserved pixels share a common surface with the 
nearest observed value. The pipeline consists of two 
primary technical components: an outlier removal module 
and a surface geometry model.

ScaffNet [18] integrates Spatial Pyramid Pooling (SPP) 
[19] with an encoderdecoder architecture to enhance the 
densification of sparse point cloud inputs. By combining 
pooling outcomes with small and large kernel sizes, an 
equilibrium between data density and salient details is 
achieved.

A new simulated and real-life dataset for non-repetitive 
circular scanning (NRCS) LiDAR has been introduced in 
[20]. Additionally, they propose a neural network, ST-
DepthNet, featuring a spatio-temporally extended U-Net 
architecture.

Papers | 3D-iSA



  33GFaI-TAGUNGSBAND 2024

3 METHODS

Colorization using optimization [21] is a method that 
adds colors to grayscale images through optimization 
techniques. The core principle of the method involves 
minimizing the difference between the weighted 
averages of neighboring pixel values. These weighting 
functions are computed based on the squared difference 
and normalized correlation between two pixel values. 
By optimizing a cost function, the algorithm effectively 
converts grayscale images into their corresponding 
colored versions. In this contribution, the optimization 
techniques from colorization are repurposed to compute 
depth information.

3.1 PROBLEM FORMULATION

The proposed method for depth completion, namely 
colorization, is modified as follows:

and
𝑈(𝑥mask) =  𝐺𝑥 =  𝑑.

(𝐵 + 𝐺)𝑥 = 𝐴𝑥 = 𝑑.

(𝐵 + 𝐺)𝑥 = 𝐴𝑥 = 𝑑.

The weight 𝓌𝑥𝑠 is the average over the total number of 
nearest neighbor pixels. By combining the optimization 
equation and the constraint, we obtain:

The matrix 𝐴 is sparse because it includes only the 
nearest neighbors, making it efficient in terms of storage 
and computation. The sparsity depends on the number 
of nearest neighbors chosen, and the matrix size is 
determined by the dimensions of the sparse depth 
input image, which can be substantial. The matrix 𝐴 is 
nearly-symmetric due to the nature of the weights, which 
represent a weighted average over the nearest neighbors. 
This nearly-symmetric property allows for efficient 
solving using algorithms [22, 23] designed for sparse 
matrix equations. The constraint of the equation ensures 
that the dense depth output at the original sparse input 
pixel locations does not change, preserving the integrity 
of the sparse input data. The objective function and the 
constraint ensure that the constructed matrix is weakly 
chained diagonally dominant (WCDD). Consequently, 
the matrix is non-singular [24], guaranteeing a unique 
solution. Unlike optimization or neural network-based 
methods, this approach does not require parameter 
tuning or training and consistently converges to the same 

Here, 𝐴 is a sparse matrix, and we aim to solve the sparse 
matrix system:

(2)

(5)

(3)

(4)

(6)

solution. Additionally, the proposed algorithm tackles 
linear algebra problems, which can be optimized for 
speed and efficiency by leveraging GPUs [25], enhancing 
its overall performance.

The proposed method relies on neighboring weights. We 
experimented with various sizes and shapes of nearest 
neighbors [13] to assess the impact of different weights 
on the results, which are depicted in Fig. 1.

Fig. 1: Various radius sizes and shapes of nearest 
neighbors. Radius from left to right: 1, 2, 1, 2. Shape from 
left to right: cross, cross, full, full. The sum of the weights 
of the neighbors equals the weight of the center pixel.

3.3 GROUND TRUTH GENERATION

We approximate ground truth data using a process 
called „binning“. This involves combining consecutive 
sparse measurements taken over 50 frames of a static 
scene. The single frames differ due to the non-repetitive 
sampling trajectories of the sensors. For each pixel 
position, we take the median of the sampled values that 
correspond to non-zero entries in the images.

3.4 EVALUATION METRICS

To assess the performance of the depth completion 
algorithms, we employ two widely utilized error metrics: 
mean absolute error (MAE) and root mean square error 
(RMSE), both reported in meters. Notably, the evaluation 
focuses solely on foreground objects, excluding distant 
elements, the maximum depth is set to 100 meters.

The MAE metric is computed as the average absolute 
difference between the ground truth and predicted 
values, as expressed by the formula:

where 𝒴𝑖 denotes the ground truth pixel value at the 𝑖-th 
pixel position, 𝒴𝑖 corresponds to the pixel value derived 
from the outcome of different algorithms at the same pixel 
position, and 𝑛 denotes the total count of valid pixels.
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Similarly, the RMSE metric is calculated as the square root 
of the average squared difference between the ground 
truth and predicted values, employing the formula:

(7)

4 EXPERIMENTS

4.1 DATASET

The collected dataset serves the purpose of depth 
completion utilizing solid-state LiDAR sensor data, 
specifically data from the Cepton Vista-P60 and Livox 
Mid-100. Acquired in an outdoor setting, the dataset is in 
the form of rosbag files, with point cloud data transformed 
into 2D images saved as .png files. The image dimensions 
are standardized at 1250x375, and any depth values 
exceeding 100 meters are clipped. The dataset used in this 
study was collected in a campus environment. All scenes 
within the dataset are static, ensuring consistency when 
aggregating sparse data from consecutive time frames. 
The campus setting includes various outdoor scenarios 
typical of an urban environment, such as pathways, 
buildings, greenery, and other common campus features.  
 
For the Cepton dataset, there are a total of 672 samples, 
distributed with 168 samples for each binning. Similarly, the 
Livox dataset comprises 620 samples, with 155 samples 
corresponding to each binning. The dataset is further 
categorized into training, validation, and testing sets. The 
Cepton dataset includes 125 training, 33 validation, and 
10 testing samples for each binning. Meanwhile, the Livox 
dataset has 114 training, 31 validation, and 10 testing 
samples for each binning. Notably, the testing samples 
include RGB images as reference data. 

An important aspect to highlight is that both the Cepton 
Vista-P60 and the Livox Mid-100 LiDAR devices follow 
non-repetitive trajectories [5, 26], allowing for integration 
over time, provided that the scenes are static.

4.2 EXPERIMENTAL RESULTS

In Table 1, the proposed method is evaluated with 
different neighbor sizes and shapes using Cepton and 
Livox datasets with a binning of 5. The results indicate 
that the configuration with a neighbor radius of 1 and a 
cross shape yields the best metric. This configuration will 
subsequently be used for later experiments.

Tab. 1: Effect of different radius sizes and shapes of the 
neighbors on the performance of Colorization on the 
Cepton and Livox datasets with a binning of 5 (binning 
time of 0:5 s and 168:7 ms, respectively).

Cepton

Radius Shape MAE (m) RMSE (m)
1 Cross 1.07 4.05

1 Full 1.13 4.07

2 Cross 1.22 4.15

2 Full 1.32 4.24

Livox

Radius Shape MAE (m) RMSE (m)
1 Cross 0.85 2.82

1 Full 0.89 2.83

2 Cross 0.95 2.87

2 Full 1.03 2.96

To investigate how different sparsity levels in the input 
affect the depth completion results, we generate various 
binnings of sparse inputs, namely 1, 5, 10, and 25. The 
corresponding binning times for Cepton are approximately 
0:1 s, 0:5 s, 1 s, and 2:5 s. For Livox, the binning times are 
approximately 33:7 ms, 168:7 ms, 337:4 ms, and 843:5 
ms. The corresponding sparse inputs are shown in Fig. 2.

(a) Cepton Vista-P60

(1)

(2)

(3)

(4)
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Fig. 2: The images display sparse depth inputs with 
varying degrees of sparsity for (a) Cepton Vista-P60 
and (b) Livox Mid-100. In both (a) and (b), the images 
are arranged as follows: (1) shows binning value 1, (2) 
shows binning value 5, (3) shows binning value 10, and 
(4) shows binning value 25.

Fig. 3 and 4 display the reference RGB image, the sparse 
depth input image, and the ground truth for Cepton and 
Livox datasets. Additionally, the figures show sample 
predictions obtained using various algorithms with a 
binning of 5.

(b) Livox Mid-100

(a) Reference RGB image

(c) Ground truth

(d) Colorization

(e) ScaffNet [18]

(f) SI-CNN [10]

(g) DCCS [14]

(h) CS [11]

(i) IP-Basic [13]
(b) Sparse depth input

(1)

(2)

(3)

(4)
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(d) Colorization

(a) Reference RGB image

(b) Sparse depth input

(c) Ground truth

(e) ScaffNet [18]

(f) SI-CNN [10]

(g) DCCS [14]

(h) CS [11]

(i) IP-Basic [13]

Fig. 3: Depth completion results for the Cepton dataset 
with a binning of 5 (binning time of 0:5 s). (a) Reference 
RGB image, (b) Sparse depth input, (c) Ground truth, and 
(d) to (i) Predictions from different methods.

Fig. 4: Depth completion results for the Livox dataset with 
a binning of 5 (binningtime of 168:7 ms). (a) Reference 
RGB image, (b) Sparse depth input, (c) Ground truth, and 
(d) to (i) Predictions from different methods.

Table 2 presents the results of a comparison between 
different algorithms on the Cepton and Livox datasets, 
showing both mean absolute error (MAE) and root mean 
square error (RMSE). Additionally, the table shows the 
impact of different binnings in the sparse input. Notably, 
our proposed method exhibits the best performance in 
most cases compared to other algorithms.
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Tab. 2: Evaluation results on different methods on Cepton and Livox datasets.

Fig. 5: Depth completion results with different binnings.

Cepton Livox
Binning time (ms) 100 500 1,000 2,500 33.6 168.7 337.4 843.5

Frames integrated 1 5 10 25 1 5 10 25

Method MAE (m) MAE (m)
Colorization 1.49 1.07 0.89 0.71 1.55 0.85 0.68 0.49

ScaffNet [18] 1.80 1.72 1.68 1.60 1.73 1.19 1.05 1.05

SI-CNN [10] 1.64 1.64 1.63 1.64 3.09 1.10 1.09 1.07

DCCS [14] 2.76 2.25 2.23 2.18 6.56 2.15 1.90 1.63

CS [11] 1.77 3.30 13.97 30.40 4.07 2.28 6.05 23.55

IP-Basic [13] 1.19 1.32 1.42 1.50 2.15 0.90 0.91 0.99

Method MAE (m) MAE (m)
Colorization 4.64 4.05 3.72 3.16 3.97 2.82 2.50 2.02

ScaffNet [18] 6.11 5.88 5.69 5.46 4.57 3.82 3.54 3.52

SI-CNN [10] 4.82 4.66 4.62 4.56 8.18 3.14 3.04 2.96

DCCS [14] 6.25 5.40 5.27 5.09 11.44 4.65 4.22 3.74

CS [11] 4.98 8.32 24.40 40.33 7.34 7.11 15.58 35.31

IP-Basic [13] 5.12 5.33 5.48 5.63 6.13 3.63 3.66 3.82

The results obtained from Cepton and Livox datasets 
reveal distinct behaviors as the number of binnings in 
the input increases. In the case of the Cepton dataset, 
Colorization, ScaffNet and DCCS exhibit a decreasing 
trend in MAE as the number of binnings increases, as 
shown in Fig. 5. Conversely, the remaining methods 
demonstrate a general increase in MAE with higher 

binnings. For the Livox dataset, a similar trend emerges 
where all methods experience a decrease in MAE as the 
binning value ascends from 1 to 5. Nevertheless, it is 
worth noting that some algorithms display a subsequent 
increase in MAE when confronted with larger numbers of 
binnings.
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Further observations reveal that, across all algorithms for 
Livox depth completion, the most significant decrease 
in MAE occurs between binnings of 1 and 5. Beyond 
a binning of 5, the improvement in MAE becomes less 
pronounced or even results in increased MAE. In the case 
of Cepton depth completion, certain algorithms exhibit 
a decrease in MAE, while others experience an increase 
in MAE from a binning of 1 to 5. The depth completion 
results using the solidstate LiDAR dataset indicate that 
having a higher number of valid data points in the sparse 
input does not necessarily guarantee a more accurate 
prediction result.

A limitation of the proposed method is its processing 
time, as it requires solving a large matrix system. Table 
3 shows that after optimization with GPU utilization, the 
running time is reduced by about 4 times. When the input 
image resolution is halved, the running time is further 
reduced by about 5 times.

Another limitation of the method is its reliance on nearest 
neighbors with equal weights, which does not account for 
shape edges across different surfaces. A potential future 
development is to incorporate RGB images as guidance 
to dynamically adjust the weights.

5 CONCLUSION

In this paper, we propose a depth completion method 
that addresses the problem through colorization. 
Additionally, we provide a new benchmark for solid-state 
LiDAR sensors, specifically the Cepton Vista-P60 and 
the Livox Mid-100. We observe the potential of utilizing 
solid-state LiDAR sensors for depth completion tasks and 
other computer vision applications.
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Zusammenfassung:  Die Erfassung von Aufmaßen von 
Treppenläufen und podesten ist ein notwendiger Schritt 
in der Vorfertigung von metallischen Treppengeländern. 
Derzeit erfolgt dies in einem manuellen Prozess mit 
einfachen Messmitteln oder terrestrischem Laserscanner, 
ohne unmittelbare Datenauswertung und -kontrolle. 
Fehler werden somit nicht erkannt und führen zu hohen 
Kosten und Aufwänden. Um dem entgegenzuwirken, wird 
in diesem Beitrag ein Assistenzsystem in Kombination 
mit Messsystematik zur Ermittlung der Aufmaße und 
Erstellung der 3D-Modelle vorgestellt. Dieses beinhaltet 
eine angeleitete Vermessung mit einem terrestrischen 
Laserscanner und einer Vor-Ort Auswertung, sodass 
Fehler im Rohbauobjekt erkannt und korrigiert werden 
können. Insgesamt wird eine digitale Datenhaltung 
ermöglicht und die Aufmaßermittlung erfolgt objektiv und 
reproduzierbar.  

Keywords: Treppenaufmaß, TLS, Assistenzsystem, 
Digitalisierung

1 EINFÜHRUNG

Im Bauwesen sind aufgrund von hohen Rohbautoleranzen 
präzise Aufmaße der tatsächlichen Geometrie des 
Rohbaus unverzichtbar, um eine präzise Vorfertigung der 
Bauteile sicherzustellen [1]. Treppengeländer müssen 
sowohl ästhetischen als auch sicherheitstechnischen 
Anforderungen gerecht werden [2] und unterliegen 
in Deutschland strengen Regularien, die eine exakte 
Anpassung an die baulichen Gegebenheiten erfordern 
[3]. So ist beispielsweise die Mindesthöhe von Geländern, 
abhängig von der Gebäudetypologie, fest vorgeschrieben. 
Entsprechend gilt es, die Höhe des Fertigfußbodens im 
Rohbau zu erfassen und das Geländer daran zu planen.

Die Einpassung von Treppengeländern, die einen 
hohen Vorfertigungsgrad bei Fertigungstoleranzen im 
Millimeterbereich haben, gestaltet sich herausfordernd, 
da bereits geringe Abweichungen signifikante 
Nacharbeiten nach sich ziehen können. 

Abb. 1: Schema der Verknüpfung des Messystems und der 
parametrischen Konstruktion mit dem Assistenzsystem

▶
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Abb. 2: Innovierter digitaler Prozesse nach 
Verwendungsstandorten des Assistenzsystems

Neben der ursprünglichen Methode zur 
Geometrieerfassung mit einfachen Messmitteln wie 
Gliedermetermessstab und Rotationslaser hat sich der 
Einsatz von terrestrischen Laserscannern etabliert. Mit 
diesen lassen sich die Strukturen im Rohbau schnell 
und mit hoher Genauigkeit in Form von 3D-Punktwolken 
erfassen [4]. Allerdings ist die Auswertung dieser 
Daten sehr zeitaufwändig und nur von qualifiziertem 
Personal durchführbar. Nicht-erfasste Maße, z.B. durch 
Abschattungen, müssen nachträglich aufwändig ergänzt 
werden.

In diesem Beitrag wird ein Assistenzsystem 
vorgestellt, das das Personal durch den Prozess der 
Aufmaßermittlung mittels terrestrischem Laserscanner 
führt (siehe Abbildung 1). Dabei wird die Vermessung 
angeleitet und die Aufmaße werden direkt automatisiert 
aus den Messdaten abgeleitet, sodass die Ergebnisse vor 
Ort vorliegen. Nicht-erfasste Maße können mit einfachen 
Messmitteln erfasst und ergänzt werden. Somit wird 
der Prozess robuster, erheblich beschleunigt und der 
Personalaufwand wird reduziert. 

2 PROZESS ZUR DIGITALEN AUFMASSERFASSUNG

Der digitale Prozess umfasst 
sowohl die Vorbereitungsphase 
am Unternehmenssitz als 
auch die Erfassung und 
Auswertung vor Ort auf der 
Baustelle (siehe Abbildung 
2). Das Assistenzsystem 
führt die Anwendenden 
durch den Prozess und 
erleichtert Projektierungs- 
und Dokumentationsaufgaben. Die projektspezifischen 
Stammdaten zu den Treppenhäusern, Etagen sowie 
zugehörigen Parametern zu den Treppenläufen und 
-podesten auf Basis von 2D-Rohbau-Zeichnungen 
werden zu Beginn festgelegt. Anhand dieser wird 
mittels parametrisierter Konstruktion ein Soll-Modell des 
Treppenhauses erstellt.

Für die Aufmaßgenerierung leitet das Assistenzsystem 
systematisch durch den Messprozess und ermöglicht 
eine automatisierte Ableitung der notwendigen 
Aufmaße. Der eingesetzte terrestrische Laserscanner 
erfasst eine Punktwolke der Rohbaugeometrie, anhand 
der die tatsächlichen Aufmaße abgeleitet werden. Mit 
dem automatischen Abgleich der Aufmaße mit den 
Solldaten wird unmittelbar vor Ort eine Plausibilitäts- 
und Vollständigkeitsprüfung durchgeführt. Dies erfolgt 
in einem mehrstufigen Validierungsprozess, bei dem die 

Daten in drei Kategorien eingeteilt werden: plausible, 
nicht-plausible und fehlende Aufmaße. Aufmaße innerhalb 
der Bautoleranz gelten als plausibel, wohingegen 
Messergebnisse außerhalb als nicht-plausibel angesehen 
werden. Die Vollständigkeitsüberprüfung identifiziert 
die fehlenden Aufmaße, die durch das Messsystem und 
die nachgelagerte Auswertung nicht erfasst wurden. 
Im Assistenzsystem werden die drei Kategorien visuell 
hervorgehoben, sodass die Mitarbeitenden alle Daten zur 
Korrektur und Nachprüfung effizient identifizieren können. 
Die manuelle Nachvermessung erfolgt mit traditionelle 
Messmitteln, wie dem Gliedermetermaßstab, und die 
Ergebnisse werden ebenfalls einer Plausibilitätsprüfung 
unterzogen. Ziel ist es, sicherzustellen, dass die 
erfassten Aufmaße eine exakte Grundlage für die 
präzise und unmittelbare Erstellung der 3D-Modelle des 
tatsächlichen Treppenhauses bilden, anhand denen das 
Treppengeländer geplant werden kann.

Im Folgenden werden das Vorgehen zur Vermessung 
mit einem terrestrischen Laserscanner sowie die 
automatisierte Aufmaßgenerierung aus den Punktwolken 
beschrieben.

2.1 MESSSYSTEMATIK

Terrestrische Laserscanner wurden für viele 
verschiedene Anwendungen konzipiert und verfügen 
entsprechend über eine Vielfalt an Messeinstellungen. 
Für den Anwendungsfall Treppengeometrie im Rohbau 
hat sich gezeigt, dass eine niedrige Auflösung bei 
mittleren Qualitätseinstellungen einen geeigneten 
Kompromiss zwischen Geometrieerfassung, Scandauer 
und Datenmenge darstellt. Für eine effiziente 
Vermessung mit einem terrestrischen Laserscanner gilt 
es, jeden Standpunkt relativ zur Treppe so zu wählen, 
dass die relevante Geometrie ausreichend aufgenommen 
werden kann. Zeitgleich müssen sich die Punktwolken 
der Einzelscans genügend überlappen, sodass eine 
Registrierung dieser zueinander möglich ist. Jedoch ist 

Papers | 3D-iSA



42 GFaI-TAGUNGSBAND 2024

die Gesamtzahl der Scannerstandpunkte aus Zeit- und 
Speicherkapazitätsgründen gering zu halten. 

Abb. 3: Scanner-Standpunktplanung zur Treppenmessung 
mit vier Standpunkten (als Kreuz dargestellt)

Abb. 4:Standard-Markierung eines Meterriss (oben) mit 
3D gedruckter Kugeladapter (unten)

Abb.5: Parametrisierte Treppenarten, v.l.n.r.: gerade 
Treppe ohne bzw. mit Podest, Podesttreppe mit zwei 
90°-Wendungen, Podesttreppe mit 180°-Wendung [5]

3 4

In Abbildung 3 ist die Standortplanung für die 
Vermessung einer Etage mit vier Standpunkten 
dargestellt. Die Einzelscanregistrierung erfolgt 
automatisiert, flächenbasiert über die Wand- Decken- 
und Bodenoberflächen.

Meterrissmarkierungen (siehe Abbildung 4) sind 
essenziell zur etagenweise Höhenreferenz, jedoch sind 
diese in terrestrischen Scandaten anhand des groben 
Einzelpunktrasters schwer zu erkennen. Zur Erfassung 
dient hier ein Ansteckadapter mit einer Regelgeometrie als 
Ziel. Diese Sphären sind eindeutig von anderen Strukturen 
in Treppenhäusern zu unterscheiden und liefern nach 
Erkennung einen berechneten Kugelmittelpunkt, wodurch 
die Höhe des Meterrissmarker ermittelt werden kann. 
Die erkannten Höhenmarkierungen dienen weiterhin 
zur etagenweisen Ausrichtung der Scandaten zur 
Referenzhöhe.

2.2 AUSWERTESTRATEGIE

Anhand der via terrestrischem Laserscanner erfassten 
Punktwolken des Treppenhauses gilt es, die Aufmaße 
für die Vorfertigung des Treppengeländers abzuleiten. 
Dazu wird die Information, welche Aufmaße gesucht 
sind, benötigt. Diese wird aus dem dreidimensionalen 
Sollmodell der Treppen und -podeste abgeleitet.

Zur Generierung eines digitalen Sollmodells eines 
Treppenhauses wurden parametrische Beschreibungen 
für Treppenarten (siehe Abbildung 5), -auflager und 
-podeste entwickelt. Diese enthalten, im Falle der 
Treppen, Parameter wie Stufenanzahl, Steigung 
(Stufenhöhe), Auftritt (Stufentiefe) und Treppenbreite. Zur 

Geländerplanung werden neben der Treppengeometrie 
die der Auflager (Übergang zwischen Treppe und Etage) 
und dem Treppenauge benötigt. Da eine Etage in der 
Regel eben ist, umfasst deren Parametrisierung neben 
der Deckenstärke die aneinandergereihten Strecken und 
Winkel, die das Treppenauge geometrisch beschreiben. 
Die jeweiligen Parameter des Treppenhauses sind 
den Architekturzeichnungen zu entnehmen, sodass 
das Sollmodell automatisiert generiert werden kann. 
Zeitgleich werden die gesuchten Aufmaße hinterlegt.

Die Aufmaße werden treppen- und etagenweise aus 
den Punktwolken abgeleitet. Es gilt es zunächst, die 
Treppe aus der Punktwolke zu segmentieren und an 
der Wange (offene Seite der Treppe) auszurichten. 
Danach sind die Elemente wie Stufen und Podeste zu 
identifizieren und klassifizieren. Beide Schritte basieren 
auf einer Ebenensegmentierung mittels RANSAC. Die 
Klassifizierung erfolgt mithilfe der vorhanden Sollwerte 
wissensbasiert anhand der Richtung des Normalenvektors 
und der Lage des Schwerpunkts im Raum. 

Die gesuchten Aufmaße werden indirekt abgeleitet, 
indem jeweils zwei benachbarte Stufenebenen mit der 
Ebene, die die Treppenwange repräsentiert, zu einem 
Punkt verschnitten werden. Die 3D-Abstände der 
Schnittpunkte bilden die Aufmaße.  

3 ANALYSE DES PROZESSES

Die Aufmaßermittlung von Treppenhäusern im Rohbau 
mit einem Assistenzsystem sieht den Einsatz von 
einem terrestrischen Laserscanner mit automatisierter 
Datenauswertung vor. Im Folgenden werden die 
experimentell erreichte Ergebnisgüte mit dem 
Messsystem sowie die Vorteile der Verwendung des 
Assistenzsystems betrachtet.

3.1 ERGEBNISGÜTE DES LASERSCANNERS IN 
DER AUFMASSERFASSUNG

Am Beispiel einer geraden Treppe im Rohbau 
(siehe Abbildung 6) wurden die Aufmaße (ohne die 
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Abb. 6: Maßübersicht für Treppenaufmaß

Tab. 1:  Vergleich ausgewählter erfasster Aufmaße  
(Maße in mm)

Meterrisshöhe in der nächsten Etage, Maß 15) mit der 
traditionellen Messmethode (Gliedermetermessstab) 
direkt sowie einem terrestrischen Laserscanner (Z+F 
Imager 5010) indirekt ermittelt. Als Referenz wurde die 
Treppengeometrie zusätzlich mit einem höhergenauen 
Messsystem (Leica Absolute Tracker AT960-LR) 
aufgenommen und die Aufmaße wurden ebenfalls indirekt 
als 3D-Abstände der Schnittpunkte von Treppenebenen 
ermittelt.

Jedem Aufmaß wurde eine Maßanforderung basierend 
auf den Ansprüchen der Vorfertigung zugeordnet und 
jedes Messergebnis entsprechend des Referenzwertes 
und der Maßanforderung bewertet. Die Ergebnisse sind 
in der Tabelle 1 farbcodiert dargestellt. Es zeigt sich, 
dass die Aufmaßermittlungen mit dem terrestrischen 
Laserscanner im Gegensatz zum Gliedermetermessstab 
den Maßanforderungen entsprechen. Die hohe 
Abweichung im Maß 18+19 ist nicht auf das Messmittel, 
sondern auf einen groben Fehler in der Dokumentation 
zurückzuführen.

3.2 VORTEILE DES ASSISTENZSYSTEMS 

Das zentrale Ergebnis der Aufmaßermittlung mit 
dem Assistenzsystem ist ein 3D-Ist-Modell der 
Treppengeometrie, das direkt im Anschluss an die 
Vermessung generiert wird. Dieses ist aufgrund 
der Qualität der angeleitet erfassten Daten und der 
integrierten Datenüberprüfung konsistent und bildet 
eine valide Datengrundlage für die Vorfertigung von 
Treppengeländern. Da nur ein Mitarbeitender für den 
innovierten Prozess und kein manuelles Eingreifen nach 
Abschluss der Vermessung notwendig ist, wird mit dem 
Assistenzsystem signifikant Personal- und Zeitaufwand 
eingespart.

Das Assistenzsystem führt den Anwendenden durch 
den gesamten Prozess der Vermessung und übernimmt 
die Aufmaßgenerierung. Eine messtechnische 
Vorqualifikation anwenderseitig ist somit nicht 
notwendig. Die Generierung der Aufmaße vor Ort auf der 
Baustelle gewährleisten die vollständige Datenaufnahme 
und verhindern somit erneute Anfahrts- und 
Vermessungskosten. Zudem bietet das Assistenzsystem 
eine umfangreiche digitale Datenhaltung. So werden 
Rohdaten, Zwischenergebnisse sowie Notizen und Fotos 
dokumentiert, sodass die projektweite Bearbeitung 
transparent ist und unmittelbar zur Verfügung steht. 

Im Vergleich zur traditionellen Messmethodik werden 
die ergonomischen Bedingungen für die Mitarbeitenden 
verbessert, da die Notwendigkeit für manuelle und 
körperlich belastende Tätigkeiten reduziert wird.

4 FAZIT UND AUSBLICK

Die Aufmaßermittlung mit terrestrischen Laserscanner 
und dem vorgestellten Assistenzsystem, das durch den 
ganzen Prozess von der Projektierung bis zur Ableitung 

der Aufmaße führt, liefert ein konsistentes 
3D-Modell des erfassten Treppenhauses für 
die anschließende Geländerkonstruktion. 
Der Prozess ist robuster, reproduzierbar und 
effizienter im Vergleich zur Vermessung ohne 
Anleitung und automatisierte Auswertung. 

Das Assistenzsystem befindet  sich noch in 
der Entwicklung. Insofern stehen die Analyse 
der Eignung in der Praxis und die Integration 
des Systems in den Arbeitsalltag noch aus.

Mit der Vermessung des Rohbaus mittels terrestrischem 
Laserscanner werden neben der für die Aufmaßermittlung 
von Treppenläufen notwendigen auch redundante 
Geometrien erfasst. Durch Bereitstellung dieser Daten 
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für den Bauherren und anderer Gewerke kann hier eine 
Wertschöpfung erreicht werden.

Derzeit beschränkt sich das System auf gerade 
Treppen mit und ohne Podest sowie mit 90°- und 
180°-Winkel. Gewendelte Treppen werden bisher 
nicht berücksichtigt, sodass das System nach 
nachgewiesener Eignung um diese erweitert werden 
sollte. Die Aufnahmemöglichkeit meterrissbezogener 
Maße sollte ebenfalls weiterentwickelt werden, indem 
ein weiterer, höhenverstellbarer Adapter konstruiert wird. 
Dieser soll auf Baustellen nicht nur bei den genormten 
Meterrissmarkern, sondern auch bei angezeichneten 
Meterstrichen angewandt werden können. Ebenfalls ist 
eine Skalierung der Anwendung des Aufmaßprozesses 
auf andere Bereiche wie Außentreppengeländer, 
Balkonumrandungen und Fassaden denkbar. 
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Abstract. In this paper we propose a method for 
missing and dead plant estimation given a 3D pointcloud 
of vineyards. Following existing approaches we estimate 
the plant canopy volume, i.e. the volume of the plant 
foliage, and perform classification through thresholding. 
We propose two additional thresholding methods and 
show their effectiveness by comparing them to an 
average volume thresholding baseline. Furthermore, we 
demonstrate our approach on pointclouds acquired with 
different sensors (lidar, solid-state lidar and camera) and 
plattforms (UAV and UGV).

Keywords. Viticulture · Leaf-volume estimation · 
Missing plant detection.

1 INTRODUCTION

The cultural landscape of the German Moselle valley is 
characterized by viticulture in steep-slope vineyards. 
Due to the challenging topographic and environmental 
conditions inspection is still mostly done manually. 
As manual work is expensive and the topographic and 
environmental conditions in vineyards pose a high risk for 
workers, reducing the amount of time people spend in 
vineyards needs to be reduced.

Research towards this goal focuses on robotic platforms 
for automation, e. g. [4]. Another way to reduce this 
time is automatic sensor-based monitoring. However, 
without according extraction of high-level information 
the benefit to wine makers is limited. Therefore we 
propose a method for missing plant detection given a 3D 
pointcloud of a vineyard and a list of plant coordinates. 
Manual inspection and documentation takes multiple 
person hours per vineyard and is dangerous. In contrast, 
our approach requires only few minutes excluding the 
time of data collection. An overview over the approach 
is shown in Fig. 1.

Analysis of pointclouds in agri- and viticultural settings 
is an active research field. Jurado et al. [3] detect 
grapevine trunks and derive missing plant locations. Di 
Gennaro and Matese [1] use alpha-shapes to estimate 
plant canopy volume, i.e. the volume of plant foliage, 
and perform thresholding to detect missing plants. Both 
use UAV-based 3D pointclouds, which is not optimal for 
capturing the plant geometries. Pagliai et al. [6] showed 
that pointclouds collected from a ground-vehicle are 
better suited for analysis of plant geometry.

Our approach is similar to [1], but instead of alpha-shapes 
we use the convex hull of canopy points to estimate its 
volume. This is faster and does not require tuning of the 
alpha parameter. Further, we compare three different 

Papers | 3D-iSA



46 GFaI-TAGUNGSBAND 2024

thresholding strategies for classification. We evaluate 
our approach on multiple datasets acquired with different 
sensors and platforms (UAV, UGV).

2 MISSING PLANT DETECTION

The proposed approach consists of three consecutive 
steps. First, the input pointcloud is pre-processed to 
remove outliers and segment the canopy points of each 
individual plant. Second, we estimate the canopy volume 
by fitting a convex hull. Third, we perform thresholding 
on the estimated volumes to identify missing plants. An 
overview is shown in Fig. 1.

Fig. 1: Overview over missing plant detection approach. 
Input are geo-referenced 3D maps of a vineyard and the 
geographical coordinates of the wine plants. Processing 
steps have a dark green background, while (intermediate) 
results have a brighter green background.

;

;

.

Fig. 2: Example of a convex hull (green) fit to 
the pointcloud (red) of the extracted foliage 
of a single plant in 3D shown from different 
perspectives. Viewpoint orthogonal to plant-
rows (left), parallel to plant-rows (middle) 
and top view (right).

Pre-processing The input to our approach is a 3D 
pointcloud showing the whole vineyard and a list of 
plant coordinates. After pre-processing we return 
individual pointclouds showing each plant’s canopy. 
 
During pre-processing we extract the points that 
show canopy. Therefore, we identify and remove the 
ground points using RANSAC to fit a ground plane into 
pointcloud segments. This is done in a piecewise-fashion 
to better approximate steep-slope vineyards complex 
topology. Segments of size 10m x 10m were empirically 
identified as effective trade-off between accuracy 
and robustness. Then duplicate points and outliers are 
removed using functions provided by the the Open3D-
Library [8]. Using the plant coordinates we extract 
bounding boxes of size 1,2m x 1,2m around each plant. 
The trunk points are removed by estimating the height 
of the bottom of canopy and deleting all points below. 
We calculate a histogram of the number of points over 
the up vector for each plant. Only a minor proportion of 
points falls onto the trunk, so beginning from the ground 
we define the bottom canopy height as the first bin that  

Thresholding Given the plant volume v𝑖 of the i-th 
plant, we perform binary classification using a volume 
threshold τ . If ʄτ (v𝑖) = v𝑖 < τ we assign the positive class, 
i.e. plant missing plant, otherwise negative. In [1], plants 
are grouped in groups of three and the average volume 
over all groups is used as threshold for classification. 
We follow this approach for single plants, denoted as  
τ avg. This is likely to produce many false positives. Hence, 
we propose two additional approaches. We offset the 
average by the standard deviation τ std and we use labeled 
samples to adjust the threshold such that the F1-Score 
over the train set 𝑉 is maximized. The thresholds are 
calculated as follows:

contains > 1.5% of all points.

Volume Estimation We use the convex hull to estimate 
plant canopy volume. We considered alpha shapes, 
such as proposed by [1], but found that the impact on 
classification performance is marginal and convex hull is 
faster and parameterfree.
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Fig. 3: Comparison of different thresholds on all three 
pointcloud datasets with respect to F1-Score.

A comparison of the thresholding methods is shown in 
Fig. 3. In general the best performance is achieved by  
τ opt. The baseline τ avg has many false positives and lowest 
performance.Surprisingly, τ std performed almost as well 
as the optimized threshold without requiring annotated 
samples.

Tab. 1: Overview over acquired pointcloud datasets.

Tab. 2: Results of our missing plant detection experiments. We used 5-fold crossvalidation and report the 
mean and standard deviation per metric. The best results per dataset are highlighted.

3 EXPERIMENTS

Datasets The examined vineyards is located in 
Bernkastel-Kues in Germany and belongs to DLR Mosel. 
More information about the vineyard can be found 
in Hermes [2]. 3D pointclouds of the vineyards were 
collected with different sensors and plattforms (see Tab. 
1). L1-Lidar and L1-opt where acquired from a DJI Matrice 
300 RTK drone at an altitude of 35m and Hesai-XT from 
a robotic platform on ground-level. More information on 
the acquisition of the latter dataset can be found in [5]. 
Additionally, we use a list of plant coordinates2.

Similar to [3] this list could also be automatically derived 
from the pointcloud.Finally, for evaluation we derived our 
ground truth labels for missing plants from a plant growth 
rating file3. It contains 1712 manual per-plant annotations 
about the plants’ growth stage, ranging from 0 to 9. We 
follow the rating scheme proposed by Porten [7] and 
define 0 as positive cases, otherwise negative.

Experimental Setup We focus our evaluation on 
quantifying the difference in classification performance 
given different thresholding strategies and acquisition 
methods and platforms. In all experiments we use 
the same parameters for pre-processing and volume 
estimation. We use 5-fold cross-validation to get an 
objective estimate of the models performance. Based 
on predictions we calculate accuracy, precision, 
recall and F1-score and calculate mean and standard 
deviation. Accuracy, precision and recall are not very 
expressive individually. Hence, we provide the results for 
completeness, but focus on F1-Score.

Name Sensor Method/Software Points Acquisition 
Date

L1-Lidar Zenmuse L1 Lidar DJI Terra 66,793,953 03.08.2022

L1-opt Zenmuse L1 
Camera

Photogrammetry1 43,365,338 03.08.2022

Hesai-XT Hesai-XT-32 SLAM 78,118,515 08.08.2022

Dataset Thresholding Accuracy Precision Recall F1-Score
L1-opt τ avg

τ std

τ opt

0.474 ± 0.130 

0.884 ± 0.015  

0.831 ± 0.073

0.176 ± 0.037 

0.000 ± 0.000 

0.449 ± 0.172

0.901 ± 0.034 

0.000 ± 0.000 

0.558 ± 0.153

0.293 ± 0.054 

0.000 ± 0.000  

0.445 ± 0.059

L1-Lidar τ avg

τ std

τ opt

0.469 ± 0.200 

0.836 ± 0.081  

0.843 ± 0.092

0.150 ± 0.041 

0.557 ± 0.273  

0.616 ± 0.273

0.662 ± 0.140 

0.339 ± 0.237 

0.343 ± 0.233

0.236 ± 0.045 

0.290 ± 0.123  

0.313 ± 0.138

Hesai-XT τ avg

τ std

τ opt

0.525 ± 0.136 

0.877 ± 0.033  

0.864 ± 0.039

0.180 ± 0.040 

0.527 ± 0.123 

0.495 ± 0.147

0.801 ± 0.075 

0.446 ± 0.154 

0.510 ± 0.144

0.291 ± 0.057 

0.447 ± 0.089  

0.462 ± 0.061

L1-opt and Hesai-XT result in similar classification 
performance, indicating that ground-based acquisition is 
not better in general. However, L1-opt’s average volume 
(ca. 0.25m3) is lower than Hesai-XT (ca. 0.55 m3) and  
L1-Lidar(ca. 0.44 m3) and noise seems higher leading to a 
negative threshold and hence no detection with τ std. The 
L1-Lidar pointcloud has the least amount of points which 
results in lower density and hence in lower classification 
performance.

1 Agisoft Metashape Professional 
2 provided by AeroDCS GmbH, Koblenz, Germany 
3 provided by DLR Mosel, Bernkastel-Kues, Germany
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5 CONCLUSION

We presented a simple approach for missing plant 
detection based on volume estimation of 3D canopy 
pointclouds.We compared different acquisition techniques 
and showed that ground-based acquisition is not better 
in general and that photogrammetric pointclouds might 
lead to underestimation of plant volume. We showed that 
the most effective thresholding method is by fitting it on 
annotated train data. However, in real scenarios this might 
not be available as annotation is expensive. Luckily, a 
threshold based on standard-deviation-adjusted average 
achieves comparable results without relying on labeled 
samples. Both presented approaches achieve ca. 7-10% 
improvement over the average-thresholding baseline. In 
conclusion, we demonstrated that volume-estimation-
based thresholding for missing-plant detection can be 
effective in steep-slope vineyards. However, acquisition 
technique and thresholding strategy must be chosen 
with care. Even though manual annotation of plant 
coordinates must only be done once, it would still be 
useful to combine our approach with plant localization to 
omit manual annotation completely.
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Abstract. This paper presents a framework for 
calculating overspray in industrial coating applications 
by leveraging 3D point cloud data and alpha shape 
analysis. The Möller-Trumbore ray-triangle intersection 
algorithm, combined with alpha shapes, enables effective 
identification of coated surfaces and overspray regions 
by assessing intersection points between the robot’s 
spray nozzle and target object. Overspray quantities 
are estimated by calculating the distribution values 
of intersected and non-intersected points, based on 
their relative positions to the spray nozzle and object´s 
surface. Experimental results show that alpha shapes are 
effective in reconstructing 3D boundaries, minimizing 
coating material waste and optimizing coating precision. 
This methodology offers economic and environmental 
benefits by reducing overspray and improving the 
efficiency of coating applications.

Keywords. 3D Point Clouds, Alpha Shapes, Overspray 
Calculation

1 INTRODUCTION

With an increasing demand for precise representation 
of complex surfaces, 3D point cloud data has become 
essential in fields ranging from industrial robotics to 
geospatial analysis. Numerous individual points, each 
of which represents a position in three dimensions, 
constitute 3D point cloud data. These points, which are 
often represented by x, y, and z coordinates, capture 
the surface features and spatial organization of objects 
or surroundings. Dealing with 3D point clouds can be 
challenging in terms of noise, incompleteness, irregular 
spacing, and complicating the extraction of geometric 
information. With the detailed spatial information 
captured in point clouds, these datasets serve as the 
foundation for reconstructing 3D surfaces through mesh 
creation. This process enables the visualization and 
modelling of complex shapes, facilitating applications 
like surface reconstruction and terrain modelling. The 
3D Delaunay triangulation is particularly well-suited for 
this purpose, offering a robust geometrical approach and 
solid theoretical foundation which represents the meshes 
formed through triangles [1].

Triangle meshes provide an accurate and structured 
representation of the surfaces a coating robot 
encounters. By using triangular meshes, realistic coating 
scenarios can be simulated, facilitating precise coating 
applications and optimized path planning in robotic 
systems. Overspray, the portion of coating material 
that misses the target surface, increases waste and 
leads to higher costs. To minimize the economic and 
environmental impact of overspray, the triangular mesh 
data of the object can be used for effective boundary 
recognition of the target area. This enables adjustments 
to the spray gun’s angle, direction, and distance to reduce 
overspray. Accurately calculating the shape of target 
surfaces is crucial for effective coating application. To 
identify the exact surface affected by the robot’s spray 
gun, the Möller-Trumbore ray-triangle intersection algo-
rithm and the alpha shape method are utilized.
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2   METHODS

The Möller-Trumbore ray-triangle intersection algorithm 
efficiently determines whether a ray intersects a triangle 
in 3D space [2]. This method is particularly valuable in 
coating simulations, as it allows for the rapid identification 
of specific triangles covered by the robot’s nozzle, 
enabling precise tracking of coated areas. The alpha 
shape algorithm is employed as a primary tool to achieve 
highly accurate reconstruction of the geometric structure 
of 3D point clouds. Alpha shapes belong to a family of 
closed polygons in 3D space that represent the shape 
of a finite set of points (or point cloud) in the Euclidean 
plane.

The algorithm begins with a finite set of points and 
uses Delaunay triangulation as a preprocessing step to 
compute the circumradius σ for each point in the set. The 
alpha shape is then formed by introducing a parameter 
α, which defines a spherical region around each point in 
the dataset. The α-complex of the given point set, for any 
real number α, is the simplicial complex generated by the 
circumcircles of each simplex in the triangulation whose 
radii are at most 1/√α. The radius of the circumcircle 
for each simplex is denoted as r(σ), and the alpha 
shape algorithm determines the threshold for retaining 
simplexes using the equation shown below [4].

The alpha shape is constructed by connecting points that 
fall within the defined threshold value, while excluding 
any connections that are obstructed by other points. 
The result is a boundary that consists of arcs, caps, and 
points, which approximates the shape formed by the point 
set as it can be seen in Fig. 1 as black irregular line, which 
resulted a concave shape. Adjusting the alpha value 
allows for capturing different levels of detail in shape 
reconstruction. Higher alpha values yield smoother, 

(1)

Fig. 1: Finding Alpha Value

simpler shapes, while lower values capture finer details, 
including concavities and small-scale features. Selecting 
an appropriate alpha value is essential for accurate shape 
representation. The alpha value can either be adjusted 
manually to emphasize/remove desired details or chosen 
optimally which will represent the natural structure of the 
point set. This flexibility ensures that the reconstructed 
shape aligns closely with the intended level of detail.

3   RESULTS

The coated area is influenced by factors such as nozzle 
angle, spray pattern, nozzle type, the paint gun’s 
position, the object’s surface slope, and the details of the 
triangular mesh. For instance, different nozzles produce 
varying spray patterns; a nozzle emitting an elliptical 
spray on a flat surface may create a conical pattern in 
3D space. To accurately determine the coated area, 
points are generated along the base ellipse of the spray 
pattern, and rays are projected toward these points to 
check for intersections with the triangular mesh using 
the Möller-Trumbore ray-triangle intersection algorithm. 
Rays that miss triangles result in overspray, forming non-
intersecting points. These non-intersecting points are 
used to create a concave polygon with the alpha shape 
algorithm, representing the overspray area.

Calculating the area of this polygon provides an 
estimation of overspray, assuming an equal distribution 
of glaze material. However, in reality, most glaze material 
tends to accumulate at the center after the spraying 
process is completed for a given position. The alpha 
shape method is also essential for accurately defining 
the exact shape of the intersecting points. This is crucial 
for determining whether specific triangles are contained 
within the polygon formed by the intersecting points. 
By identifying and adding these triangles to a list, the 
precision of the simulation is enhanced. This approach 
not only enables clear and precise visualization of the 
coating on the object but also significantly improves the 
accuracy of the simulation.

Fig. 2-5 illustrates how the alpha shape procedure is 
beneficial in the coating process. Fig. 2 shows a coated 
sink, with the target surface to be coated represented 
by the red rectangle. In this case, a certain amount of 
material has been sprayed onto the sink, but due to 
the angle and position, some of the material misses the 
object and ends up being oversprayed. To calculate the 
overspray, the amount of glaze material that lands on the 
object must first be determined. Fig. 3 shows the inter-
secting (blue) and non-intersecting (green) points after 
applying the Möller-Trumbore Intersection Algorithm, 
generated using the alpha shape algorithm. In Fig. 4, 
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Fig. 2: Target area of coating 
process (Red rectangle)

Fig. 3: Intersecting 
Points (Blue) / 
non-intersecting 
Points (Green)

Fig. 4: a) Alpha shape of 
intersecting points 
b) Alpha shape of non-
intersecting points

Fig. 6: a, b) Distribution 
of glaze material  
c) Distribution of glaze 
material onto sink 
surface

Fig. 5: Partially coated sink 
using intersecting points 
alpha shape

the intersecting points highlight the irregular shape of 
the coating surface, while the non-intersecting points 
indicate the overspray area. Fig. 5 displays the coated 
sink according to the shape of the intersecting points. 
The overspray ratio can be estimated by analyzing the 
non-intersecting area using the elliptical pattern.

If the spray is evenly distributed, this position will result in 
an overspray of 18.4636% of the glaze material.

(a) (b)

To estimate the potential overspray in grams, a 3D 
distribution function is developed. This function accounts 
for both intersecting and non-intersecting points, as well 
as their respective distances from the spray gun position 
and the center of the ellipse representing the target 
surface for each position. The distances are weighted, 
with 30% assigned to the distances between the points 
and the spray gun position, and 70% assigned to the 
distances between the points and the ellipse center. 
These weights can be adjusted based on real-world tests 
to achieve more accurate results.

Fig. 6 presents the distribution of glaze material is 
calculated using 3D distribution function and visualized 
with different color levels describing the distribution 
den-sity: yellow represent the least material, green 

indicating medium distribution, and red illustrating the 
highest accumulation of material. Fig. 7 indicates the 
distribution of glaze material onto sink surface. The 
distribution value of the points can be related to their 
corresponding triangles using barycentric coordinates, 
allowing for the estimation of their approximate gram 
values. The visualization and calculation of the gram 
values demonstrate the user to identify which parts are 
thicker or thinner, thereby improving the efficiency of 
material usage considering the right position and angle 
of nozzle, and robot trajectories.

Fig. 6 showcases the distribution of glaze material, 
calculated using the 3D distribution function and 
visualized with different color levels representing the 
distribu-tion density: yellow represents the least material, 
green indicates medium distribution, and red illustrates 
the highest accumulation of material. Fig. 6 c) shows the 
distribution of glaze material on the sink surface. The 
distribution values of the points can be linked to their 
corresponding triangles using barycentric coordinates, 
enabling the estimation of their approximate gram values. 
The visualization and calculation of these gram values 
help users identify areas with thicker or thinner coatings, 
thereby improving material usage efficiency by optimizing 
the nozzle position, angle, and robot trajectories.

The total glaze amount for this position is calculated to be 
12.61 grams, determined from the spray rate of the nozzle 
and the process duration. Following the application of the 
3D distribution, the overspray is found to be 2.03 grams, 
resulting in an overspray ratio of 16.12%.

(a) (b)

(c)
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Alpha shapes are useful not only for overspray calculations 
but also for making covered regions easier to visualize in 
coating simulations. The experiments demonstrated that 
alpha shapes effectively reconstruct the boundaries of 
3D objects. The appropriate alpha value was determined 
to capture fine details of the object and achieve highly 
accurate results. Alpha shapes generated precise models 
that were both topologically and geometrically accurate, 
as demonstrated through various case studies, including 
applications in industrial robotics and geomatics surveys.

4 DISCUSSION

The findings highlight the adaptability and reliability of 
the alpha shape approach when working with point cloud 
data. The process of calculating and visualizing overspray 
in grams can be applied to every spray gun position. 
Depending on the specific application, the choice of the 
alpha value requires careful consideration. While the 
method is highly effective for shape reconstruction, it can 
be computationally intensive for large datasets. In such 
cases, optimizations or parallel processing techniques 
may be necessary. Additionally, the distribution formula 
must be adjusted based on real-world tests, as robots 
may have different nozzles, glaze parameters, and other 
variables.

5 CONCLUSION

Alpha shapes provide a powerful tool for 3D data analysis, 
capturing fine details of point cloud data and playing 
a crucial role in object reconstruction. The method is 
highly adaptive, enabling precise identification of the 
boundaries of the coated surface, and facilitates the 
calculation of distributed and oversprayed gram values. 
This calculation can significantly improve the efficiency 
of the coating process, benefiting both the economy and 
the environment. Future studies may focus on optimizing 
computational time to determine the optimal alpha value 
for large-scale datasets in robotics, geomatics, and other 
fields.
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Abstract. Die Automatisierung von 
Beschichtungsprozessen ist in der industriellen Fertigung 
besonders bei kleinen Losgrößen eine Herausforderung. 
Im Rahmen des FuE-Kooperationsprojekts „AI4Tech 
- AuLaTeach“ wird ein System entwickelt, das 
Lackierroboter durch Vormachen programmieren kann. 
Ziel ist die Aufzeichnung von Sprühbahnen (6D) über die 
Zeit, inklusive aller technologischen Prozessparametern, 
die in ein ausführbares Roboterprogramm überführt 
werden. Die Erfassung der Trajektorien erfolgt mittels 
eines Multikamerasystems, das aktive Marker auf der 
Sprühlackierpistole verfolgt. Ein 3D-Kalibrierkörper 
und der Levenberg-Marquardt-Algorithmus sorgen 
für eine präzise räumliche Kalibrierung der Kameras. 
Der Flood-Fill-Algorithmus wird zur Marker-Erkennung 
eingesetzt, während ein paarweiser Frame-Vergleich die 
Trajektorienverfolgung unterstützt. Zur Überwindung 
von Sichtverdeckungen wird zusätzliche Sensorik an der 
Pistole installiert. Die so erfassten Daten werden direkt in 
ein gemeinsames Koordinatensystem transformiert, was 
eine präzise Reproduktion des Beschichtungsprozesses 
ermöglicht.

1 EINLEITUNG

In vielen Bereichen der industriellen Fertigung nimmt der 
Automatisierungsgrad stetig zu. Hierbei verringert sich 
der anzutreffende Automatisierungsgrad kontinuierlich 
mit der Abnahme der produzierten Losgröße. Dazu 
bestimmt die angewandte Technologie und der 
Prozess selbst ebenfalls das Maß an Automation, 
welches sinnvollerweise umsetzbar ist. Für mittlere 
und kleine Losgrößen ist eine Automatisierung von 
Beschichtungsprozessen unter wirtschaftlichen 
Gesichtspunkten häufig schwer oder nicht darstellbar. 
Allgemein nimmt die Automatisierungstiefe für 
Beschichtungsprozesse jedoch deutlich mit sinkender 
Losgröße ab. Werkstücke in kleinen Losgrößen werden 
in den meisten Fällen von Hand lackiert, dabei ist das 
Einsparpotenzial in Bezug auf Material, Zeit und Energie 
durch eine Automatisierung hier gerade am größten.

Um diese Herausforderung anzugehen, wird im Rahmen 
des FuE-Kooperationsprojektes „AI4Tech - AuLaTeach“ 
(16KN117724) bei der Gesellschaft zur Förderung 
angewandter Informatik e.V.

im Forschungsbereich Bildverarbeitung / Industrielle 
Anwendungen und die Firma „THÜMA – Maschinen 
und Service GmbH“ zusammen ein System entwickelt, 
zur Programmierung von Lackierrobotern für kleine 
Losgrößen durch Vormachen.

Ziel dieses FuE-Vorhabens ist die Entwicklung eines 
Systems zur Aufzeichnung von Sprühbahnen (6D) über 
die Zeit, inklusive aller relevanten technologischen 
Prozessparameter (Drücke, Ventilöffnung etc.), als 
Trajektorie in einem Weltkoordinatensystem (stationär), 
die von einem Werker beim fachgerechten, manuellen 
Beschichten eines Werkstücks ausgeführt wird. Diese 
Trajektorie wird automatisch in eine strikte Werkzeug-
Werkstück-Relation überführt und gespeichert.

Diese aufgezeichneten Trajektorien können dann direkt 
in das Roboterkoordinatensystem transformiert und
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zusammen mit den Prozessparametern in ein 
ausführbares Roboterprogramm überführt werden, 
so dass der Roboter in der Lage ist, das exakt gleiche 
Beschichtungsprogramm an einem identischen 
Werkstück auszuführen. Die Qualität der Beschichtung 
soll dabei der fachgerechten, manuellen Beschichtung 
gleichwertig sein.

Darüber hinaus soll das Beschichtungsergebnis anhand 
einer bestehenden Auftrags- und Schichtdickensimulation 
berechnet und visualisiert werden, um dem Benutzer 
eine Möglichkeit zu geben, die Qualität des erzeugten 
roboterbasierten Beschichtungsprogramms auch 
in der Simulation bewerten zu können. Ein solches 
direktes Feedback ist insbesondere notwendig, wenn 
Auftragsbahnen modifiziert wurden.

Zur Anpassung der Auftragsbahnen sollen zwei 
unterschiedliche Varianten durch das System 
unterstützt werden. Die erste klassische ist eine 
Benutzungsschnittstelle in einem integrierten Offline- 
Programmiersystem. Es soll möglich sein, Stützstellen 
der Bewegungsbahn zu verschieben und in ihrer 
Parametrierung anzupassen und direkt die Wirkung 
der Änderung in der Auftragssimulation als Ergebnis 
visualisiert zu bekommen. Hierdurch kann die direkte 
Wirkung von Änderungen an der Auftragsbahn bewertet 
werden.

Die zweite Möglichkeit Auftragsbahnen anzupassen 
soll in einer VR-Umgebung (virtual reality) umgesetzt 
werden. Hier sollen prinzipiell dieselben Anpassungen 
wie im ersten Fall möglich sein, nur kann hier zusätzlich 
mit der Lackierpistole gearbeitet werden, allerdings mit 
virtueller Farbe, so dass der haptische Eindruck dem 
ursprünglichen Lackierprozess sehr ähnlich ist. Der 
Materialauftrag wird mit Hilfe der oben beschriebenen 
Schichtdickensimulation dem Benutzer direkt angezeigt. 
Prinzipiell ist hierdurch auch eine vollkommen virtuelle 
Vorgabe von Lackierbahnen mit Ergebnisvorhersage 
möglich, die dann in ein ausführbares Roboterprogramm 
überführt werden kann.

TECHNISCHE ANSÄTZE

Für die Erfassung der Trajektorien wird ein 
Multikamerasystem eingesetzt, das einen festgelegten 
Arbeitsraum überwacht und aktiv Marker (siehe 
Abbildung 1) auf der Sprühlackierpistole erfasst und 
verfolgt. Um eine stabile Erkennung der Marker im Bild 
zu gewährleisten, wird ein geeigneter Bandpassfilter 
verwendet, der sicherstellt, dass im aufgenommenen Bild 
nur die relevanten Marker sichtbar sind. Jede Kamera 
führt dabei eine individuelle Erkennung und Verfolgung 

der Marker durch (siehe Abbildung 2).

Die räumliche Kalibrierung der Kameras erfolgt durch die 
Verwendung eines präzise gestalteten 3D-Kalibrierkörpers 
(siehe Abbildung 1), bestehend aus einem Würfel, dessen 
Flächen jeweils mit Diamond-Charuco-Boards versehen 
sind. Im Rahmen des Kalibrierungsprozesses extrahiert 
jede Kamera einen Translations- und Rotationsvektor, die 
ihre jeweilige räumliche Positionierung und Orientierung 
relativ zum Kalibrierkörper im dreidimensionalen Raum 
beschreiben. Unter Berücksichtigung des bekannten 
Sichtfeldes jeder Kamera auf die spezifischen 
Charuco-Boards wird in einem weiteren Schritt der 
Levenberg-Marquardt-Algorithmus angewandt. Dieser 
Algorithmus dient der nichtlinearen Optimierung der 
erfassten Translations- und Rotationsvektoren, indem 
er die Kalibrierdaten durch eine iterative Anpassung mit 
statischen Referenzaufnahmen der Szene verfeinert. 
Dieser Prozess stellt eine maximale Präzision in der 
Bestimmung der Position und Ausrichtung der Kameras 
sicher und minimiert potenzielle Kalibrierungsfehler durch 
eine konsistente, auf empirischen Daten basierende 
Optimierung.

Abb. 1: Aufnahme aus eine Kameraposition
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Abb. 3: Bild vor der Erkennung

Abb. 4: Ermittelte Pose des Kalibrierkörper

Abb. 5: Optische Fluss aus 3 sukzessive 
zusammengefügten Frame

Abb. 2: Ermittelte Pose des Kalibrierkörper

Eine zentrale Recheneinheit sorgt dafür, dass die 
Kameras synchron arbeiten, und mit den Messdaten wie 
Druck, Ventilstellung und Durchfluss aus den Sensoren 
der Sprühpistole zusammenführt werden. So werden 
die Kamerabilder optimal abgestimmt und wichtige 
Prozessdaten aufgenommen.

ERKENNUNG DER SPRÜHBAHNEN

Für die präzise Erkennung der aktiven Marker wird 
der Flood-Fill-Algorithmus verwendet, welcher 
das Bild systematisch Pixel für Pixel durchläuft, um 
zusammenhängende Bereiche (Blobs) zu identifizieren. 
Der Algorithmus überprüft dabei für jedes Pixel, 
ob es bereits markiert wurde und ob es zu einem 
zusammenhängenden Bereich oder Innenbereich gehört. 
Sobald ein zusammenhängender Bereich erkannt wird, 
werden die entsprechenden Pixel einem dominanten Blob 
zugeordnet, sofern bestimmte Kriterien erfüllt sind. Dieser 
Ansatz ermöglicht eine zuverlässige Segmentierung von 
Bildbereichen basierend auf Pixelverbindungen und 
unterstützt die präzise Erfassung von Objekten oder 
Strukturen im Bild. [1][2]

VERFOLGUNG DES TARGET MIT AKTIV MAKERN

Die Verfolgung basiert auf einem paarweisen Frame-
Vergleich, bei dem für jeweils zwei aufeinanderfolgende 
Bilder einer Kamera der Richtungsvektor (2D) für jedes 
Target über die Berechnung des Schwerpunkts ermittelt 
wird (siehe Abbildung 5). Diese Methode ermöglicht 
eine präzise Bestimmung der Geschwindigkeit des 
Targets und unterstützt bei temporären Obstruktionen 
die eindeutige Zuordnung von Blobs. Zudem erlaubt 
die Bewegungsrichtung eine prädiktive Schätzung des 
Target-Standorts im folgenden Frame, wodurch Tracking-
Verluste minimiert werden. Durch die Kombination dieser 
Bewegungsdaten mit den Positionsinformationen aus 
mehreren Kameraperspektiven wird die Zuverlässigkeit 
der Trajektorienverfolgung selbst bei teilweiser 
Verdeckung der Targets erheblich gesteigert.[3]

OKLUSIONSPROBLEM

In bestimmten Blickwinkeln der Szene kann das Target 
teilweise verdeckt sein, was zu Unterbrechungen in der 
Trajektorienaufzeichnung führt. Ein Ausfall mehrerer 
Ansichten kann ebenfalls zu Berechnungsungenauigkeiten 
beitragen. Um diese Problematik zu lösen, wird an der 
Sprühpistole zusätzliche Sensorik installiert, die ab 
einem definierten Schwellenwert die Posenbestimmung 
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unterstützt. Sobald das Target wieder in das Sichtfeld 
gelangt, wird es mittels einer Transformation in das 
gemeinsame euklidische Koordinatensystem erneut 
erkannt und korrekt seinen ursprünglichen IDs 
zugeordnet.

AUFBAU UND DURCHFÜHRUNG VON ERKENNUNG 
MITTELS MESSEXPERIMENT

VERSUCHSAUFBAU

Zur Validierung des Algorithmus wurde ein kontrolliertes 
Testszenario mit einem KR60-KUKA-Knickarmroboter 
(siehe Abbildung 6) eingerichtet, der vorab definierte 
Bahnen wiederholt abfährt. Diese experimentelle 
Anordnung erlaubt die Erfassung von Ground-Truth-
Daten zur Validierung der berechneten Pose und 
ermöglicht eine detaillierte Analyse potenzieller 
Kamerapositionen. Der Versuchsaufbau umfasste den 
3D-Kalibrierkörper sowie das Target mit aktiven Markern, 
das üblicherweise an der Sprühpistole angebracht ist. 
Eine Kamera wurde systematisch in verschiedenen 
Positionen um den Arbeitsbereich des Roboters 
platziert, um die Bewegungen unter gleichbleibenden 
Bedingungen zu erfassen. Der 3D-Kalibrierkörper und 
das Target mit aktiven Markern waren fest am Endeffektor 
des Roboterarms montiert, wodurch eine exakte 
Übereinstimmung der aufgenommenen Bewegungen 
mit den Referenzdaten gewährleistet und eine präzise 
Evaluierung des Algorithmus ermöglicht wurde.

Abb. 6: 3D-Darstellung des Messexperimentes

VERSUCHDURCHFÜHRUNG

Das Messexperiment wurde in einem strukturierten 
Ablauf durchgeführt, um präzise Ground-Truth-Daten zu 
gewährleisten.

Im ersten Schritt wurde eine Referenzaufnahme von 
vom Standpunkt der Kamera erstellt, um die extrinsische 
Kalibrierung mittels 3D-Kalibrierkörper zu bestimmen. 
Anschließend wurde ein Bandpassfilter vor die 
Kameras gesetzt, um die LEDs am Target als eindeutige 
„Blobs“ sichtbar zu machen und Bildstörungen durch 
unerwünschte Objekte zu minimieren.

Im zweiten Schritt wurden Bilddaten während einer 
simulierten Bewegungsfahrt des Roboterarms 
aufgenommen. Der Roboterarm folgte dabei vorab 
definierten Trajektorien, die in einzelne Segmente 
unterteilt waren. Die ersten drei Segmente umfassten 
Bewegungen entlang der X-, Y- und Z-Achsen des 
Roboterkoordinatensystems. An fest definierten 
Abständen entlang dieser Achsen hielt der Roboterarm in 
einer definierten position an, und die Kameras erfassten 
statische Aufnahmen des Targets.

Die abschließende Fahrt beinhaltete eine komplexe 
Trajektorie, die Bewegungen entlang aller drei 
Achsen umfasste und dynamische Punkte im 
Roboterkoordinatensystem abdeckte. Diese 
Abschlussfahrt ermöglichte die Erfassung zusätzlicher 
Datensätze zur Analyse von Bewegungen in 
mehrdimensionalen Raumachsen und diente der 
Validierung des Algorithmus bei komplexeren 
Bewegungsmustern.

AUSBLICK

Die ersten Messversuche haben gezeigt, dass 
Modifikationen am Target, bestehend aus der LED-
Marker-Konstellation und der Trägerkonstruktion, 
erforderlich sind, um die Präzision der Poseberechnung 
weiter zu steigern. Mit dem aktuellen Target sind 
folgende Anpassungen geplant: Die LEDs werden weiter 
auseinander positioniert, um eine Überlagerung der 
Markerbilder in den Kameras zu vermeiden. Dazu werden 
die Abmessungen des Targets in Länge und Breite 
vergrößert, um eine präzisere Erfassung zu ermöglichen.

Zusätzlich werden LEDs mit einem breiteren 
Abstrahlwinkel und reduzierter Intensität verwendet, um 
die Sichtbarkeit und Differenzierbarkeit der Marker in 
verschiedenen Kameraperspektiven zu verbessern.

Zur Optimierung der Testfahrten wird der Aufnahmeabstand 
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verringert, da sich der bisherige Abstand als zu groß 
erwiesen hat. Durch kleinere Schrittweiten bei den 
Messungen soll die Trajektorienverfolgung präziser 
getestet werden. Diese Anpassung ermöglicht eine 
detailliertere Erfassung der Bewegungen, wodurch die 
Genauigkeit und Zuverlässigkeit der Trajektorienanalyse 
weiter verbessert wird.

Anschließend ist die Entwicklung einer Datenfusion 
geplant, bei der die eingebaute Sensorik der Sprühpistole 
mit der internen Sensorik (Roboterpfad) sowie der 
externen Sensorik (Drehgeber des Drehtisches) 
kombiniert wird. Ziel dieser Datenfusion ist es, eine 
präzisere Synchronisation und Steuerung des gesamten 
Systems zu ermöglichen.
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Abstract. This scientific paper investigates strategies 
to enhance the economic viability and competitiveness 
of hot forging dies. A specific case study involving a 
benchmark hot forging die geometry, produced using 
additive manufacturing in a hybrid design, is presented. 
Stellite, known for its durability and suitability for laser 
powder bed fusion, was chosen as the die material. With a 
strong focus on cost-effectiveness, the innovative hybrid 
design combines an additively manufactured stellite 
engraving with a conventionally manufactured nickel 
bronze carrier. Key features, such as inlet and outlet 
ports for the cooling medium have been incorporated into 
the carrier, and its coefficient of thermal expansion has 
been adapted for the application-specific temperature 
conditions. Material properties, including compressive 
strength and offset yield strength, were assessed 
through uniaxial compression tests, transferred into a 
simulation-driven die design process. Demonstrators, 
produced via laser powder bed fusion, exhibited reduced 
abrasive wear when equipped with cooling systems. The 
results indicate extended die service life and economic 
benefits, highlighting the potential of the hybrid design 
and additive manufacturing approach for enhancing 
competitiveness in hot forging die production and 
utilization. This research offers valuable insights for the 
forging industry‘s pursuit of sustainability and efficiency.

Keywords. Cobalt-based Alloys, Forging, Integrated 
Cooling Channels, Laser Powder Bed Fusion, Stellite.

1 INTRODUCTION

The tool life and setup costs have a significant influence 
on the unit cost of a forging. Forging dies wear on the 
surface mainly due to high cyclic thermo-mechanical 
loads. To protect these from wear, there have been efforts 
in recent years to keep dies cooler for forging and hot 
forming by means of channels close to the surface. Due 
to the 3D contour, these can usually only be produced by 
laser powder bed fusion (LPBF). However, the materials 
available for LPBF usually have little resistance to the 
abrasive wear that also occurs.

Buchmayr shows that 70% of die damage is due to abrasive 
wear caused by high thermal stresses and consequently 
this shortens the service life [1]. Furthermore, 10-30% 
of the cost of the final product is due to the cost of the 
forging die. However, in addition to die costs, setup 
costs and times must also be considered. Furthermore, 
the study deals with damage to forging dies as well as 
dies and their repair options. Various repair methods are 
presented and discussed. It is emphasized that material 
selection, heat treatment, and coating play a crucial role 
in repair.

A paper by Foster et al. describes the use of laser metal 
deposition (LMD) with powder and the hardfacing alloy 
Stellite 21® to restore hot forging tools and dies [2]. It 
is successfully demonstrated that LMD is a promising 
process for manufacturing repair components for forging 
tools, as it can reduce tool wear and extend the life of 
forging tools. Foster et al. found that damaged or worn 
forging dies can be repaired using LMD, extending their 
lifetime and saving costs in comparison to conventional 
repair methods. The study identified Stellite 21® as 
a promising material because it offers good wear 
resistance, machinability, forgeability, as well as thermal 
conductivity, and improves the performance of the dies.

Topology optimization and lattice structures implemented 
during additive manufacturing (AM) can significantly 
increase the cooling efficiency of forging dies, resulting in 
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a significant improvement in tool life and wear resistance. 
Chantzis et al. developed a method for designing forging 
dies and dies with improved cooling performance and 
reduced wear under cyclic loading by AM [3]. For this 
purpose, the design for AM of hot stamping dies with 
improved cooling performance under cyclic loading 
conditions was investigated. The researchers used 
topology optimization and lattice structures to improve 
the cooling efficiency of the tool. The results show a 
significant improvement in tool life and wear resistance, 
as the optimized design can significantly reduce the 
temperature gradient and load on the tool. This leads to 
an increase in fatigue life and a reduction in the risk of 
cracks.

Komodromos, Kolpak, and Tekkaya also developed 
a method for designing forging tools and dies with 
improved cooling performance and reduced wear under 
cyclic loading by AM [4]. They dealt with the fabrication 
of forging tools and dies with integrated cooling channels 
using directed energy deposition (DED). The results show 
improvement in surface finish, reduction in wear, and 
significant improvement in tool life and wear resistance. 
The study investigated the design for AM of hot stamping 
dies with improved cooling performance under cyclic 
loading conditions. The researchers used topology 
optimization and lattice structure design to create cooling 
channels inside the tool and ball burnishing to improve 
surface quality. The study found that the optimized 
design can significantly reduce the temperature gradient 
and stress on the tool and increase fatigue life.

A publication by Tang et al. highlights the advantages 
and disadvantages of AM, such as design flexibility in 
terms of material properties and shape, and shorter lead 
times [5]. However, AM is usually associated with high 
manufacturing costs. Shorter lead times enable a faster 
response to customer requirements as well as market 
trends, and the flexibility of the design makes it possible 
to meet these requirements precisely. This feature 
is especially important for small and medium-sized 
enterprises (SME), as they usually produce one-offs or 
small batches.

2 MATERIALS AND METHODS

The present work uses the knowledge from the above 
sources to make the production of and with forging 
dies more economically attractive and to expand 
the competitiveness of SMEs. To test the scientific 
approaches, a forging die with a round engraving and 
elevation in the center was chosen. Fig. 1a reveals 
the geometry and shows an additively manufactured 

specimen immediately after the printing process. To 
achieve the overall goal of increasing efficiency in 
the forging process, the following solution steps were 
implemented:

1. The stellite type Celsit 21 was selected as the material 
to be additively processed. This is a cobalt-based alloy 
with a carbon content of 0.25 m%. A large number 
of parameter studies were carried out, in which test 
specimens were printed in the form of cuboids and then 
analyzed metallographically. These studies were used to 
find parameters as well as to obtain high quality results. 
Fig. 1b shows one of these parameter studies, in which 
twelve cuboids are still attached to the build platform 
directly after LPBF.

Fig. 1: a) Additively manufactured forging die without 
post-processing; b) Test print of cuboids for parameter 
determination.

2. The LPBF printer AconityMIDI from the manufacturer 
Aconity was used for processing. In this, argon was 
applied as an inert gas to achieve a low-oxygen 
atmosphere. The machine is also equipped with a build 
platform heater for temperatures up to 800 °C. As part 
of the parameter studies for the qualification of Celsit 
21, the machining parameters and the temperature of 
the build platform heating were varied. Fig. 2 shows two 
examples of microstructural images taken during the 
metallographic examination of the cuboids, which on the 
one hand show good quality without inclusions, voids or 
impurities, and on the other hand show the solidification 
of the weld beads during AM.

3. The layout of the hybrid forging die was designed in 
such a way that the coolant connections are attached to 
a nickel bronze carrier, and thus the coolant is passed 
through it as well as the additively manufactured 
engraving. The carrier was designed to allow fabrication 
by casting or by milling. A nickel bronze alloy called Hova-
dur K220 was chosen as the carrier material.

4. The economic aspects of production and operation 
were already taken into account during the design phase 
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of the hybrid tool. During the development of the carrier 
and engraving, care was taken to ensure that both were 
designed for the thermo-mechanical loads in the forging 
process and that the volume of the component to be 
manufactured additively was as small as possible. Thus, 
the printing time was reduced as much as possible and 
the corresponding costs for AM were kept as low as 
possible.

Fig. 2: Microstructure images at 100x magnification;  
a) Cube 7; b) Cube 2.

b)

Fig. 3: a) Hybrid-built forging tool consisting of a carrier 
and engraving; b) Internal channel system with a cooling 
channel mesh for contour-adjacent tempering.

Fig. 4: Overview of the cut simulation model.

Fig. 4 shows the installation situation in the machine as 
well as the materials and temperatures to be expected.

5. Even before the hybrid tools were produced, virtual 
simulation techniques based on finite element analysis 
were used to simulate the effect of the forces acting in 
the forging process on the one hand, and to determine the 
thermally induced expansions of the material on the other. 
In the design phase, various options were considered for 
the connection of the additively manufactured engraving 
made of Celsit 21 and the milled nickel bronze carrier, 
such as bolting, soldering or shrink-fitting.

6. After investigating the idealized force ratios in one 
cycle by means of a thermo-mechanical simulation, it 
was determined that the connection could be made by 
soldering the two components together. Furthermore, 
investigations were carried out to determine the 
coefficient of thermal expansion (CTE) of both materials. 
These showed that although the alloys selected for the 
coating material Celsit 21 and the base material Hovadur 
K220 have a different CTE, the heat-related expansions 
during brazing as well as forging do not lead to any 
significant stresses.

7. After the forging tools were manufactured, serial forging 
tests were carried out, both, with and without coolant. In 
addition to varying the coolant flow, the influence of the 
semi-finished product temperature on the wear behavior 
of the printed forging tools was also investigated.

2.1 COOLING LAYOUT

During development, it was decided to implement 
a hybrid design of the forging die. This consists 
of a carrier and engraving, including a layout for 
a symmetrical channel design with the aim of 
achieving homogeneous, wear-reducing mold cooling.  

According to the described considerations for the joining 
technology, different concepts for the design were 
developed. Fig. 3a shows the conceptual design. Both, 
the supply and return lines are integrated into the carrier, 
together with the associated connections for the cooling 
medium. The base of the carrier has a larger diameter 
than the engraving and can thus be used for mounting 
in the machine. The joining surface is flat, with both 
components having the same diameter. Fig. 3b shows 
the concept for the design of the internal cooling channel 
network. While the flow and return have a comparatively 
large diameter, the system splits into six thinner arms in 
the mandrel area.
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Fig. 5: Results of the compression tests with respect to 
σdB and σd0.2 as a function of temperature.

It can be seen that the division into the six branches is 
already done at the lower end. This makes the structure 
appear more complex and accurate. In accordance with 
the parameter studies, the cooling channels are designed 
with a diameter of 2 mm at the thinnest section. To ensure 
effective heat dissipation in the thermally highly stressed 
area, the cooling is concentrated on the mandrel area 
and not on the annular outer structure. This ensures 
homogeneous heat dissipation in the wear-critical area. 
The channels run 2 mm below, along the flanks of the 
engraving and each have a diameter of 2 mm. They are 
supplied by the forward and return flow, each with a 
diameter of 6.2 mm.

3 RESULTS

3.1 UNIAXIAL CYLINDER COMPRESSION TESTS

During the forming process, the main loads act in the 
mandrel area of the die. The investigation was carried 
out at three different temperatures (200 °C, 400 °C, 
and 600 °C) and the results are shown in Fig. 5. Here, 
σdB (compressive strength) as well as σd0.2 (offset yield 
strength) were determined from each temperature and 
the mean values were calculated. No relevant difference 
can be seen between the different temperatures for σdB 

and the crush limit σd0.2. σdB reaches the maximum value 
of 1,466 MPa at 200 °C. For σd0.2, a maximum value of 
about 870 MPa is reached at 400 °C. At the temperatures 
studied, the standard deviation, for both σdB and σd0.2, 
was below 5% (40 MPa), with the σd0.2 upset limit having 
a higher standard deviation of 17% (150 MPa) at a 
temperature of 400 °C.

Some standard deviation in the uniaxial cylinder 
compression tests can be explained due to the 
manufacturing variant with LBPF of the specimens. This 
can be concluded by the slightly increased porosity 
compared to solid material, which cannot be com-
pletely avoided even depending on the selected process 
parameters.

3.2 THERMAL SIMULATION WITH COOLING

For the thermal cooling simulation, a surrogate body was 
introduced into the cooling channel geometry to represent 
the cooling medium. The simulation results show that the 
highest stresses are present in the breakdown of the 
cooling channels, which are located directly in the center 
just below the mandrel surface.

Within the first cycle, a maximum temperature of 850 °C 
occurs in the body made of Celsit 21 in the area near 
the surface. This maximum temperature is limited to the 
mandrel radius. The remaining area of the surface has a 
temperature between 300 °C and 600 °C, depending on 
the contact time and contact pressure. The temperature 
inside the stellite tool remains constant at 180 °C.

3.3 CONNECTION OF CARRIER AND ENGRAVING

With regard to the connection technology of the additively 
manufactured engraving, carrier and installation of the 
hybrid tool in the machine, different concepts were 
developed. In the final version, four jaws were provided 
for fixing, which are used for bolting to the rest of the 
machine structure. For this purpose, a step is to be 
incorporated both in the jaws and in the engraving for 
force transmission.

In determining the final concept, both the effort required 
during production and as-sembly as well as cost-
effectiveness and quality were taken into account. 
Vacuum braz-ing was identified as a suitable process. 
A flat joining surface was preferred due to simplified 
production and soldering. This determination had a 
corresponding effect on the design of the layout of the 
cooling channels.

Hovadur K220 was selected as the substrate material. 
This is characterized by its high thermal conductivity 
coefficient and good brazing properties with constant 
corrosion and abrasion resistance. Hovadur K220 is a 
nickel bronze that meets all technical requirements. High-
vacuum brazing was selected as the joining technique, 
using silver and copper solders with germanium 
and cobalt content as the brazing alloy. It was also 
investigated whether the solder should be used as a foil, 
paste, or in combination.
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3.4 STRESS AND THERMAL SIMULATION WITHOUT 
COOLING

The results of the thermal simulation are shown in Fig. 
6. To estimate possible cracking, the calculated positive 
maximum principal stress is compared with the tensile 
strength at the present temperature. By comparing with 
the calculated results (max. principal stress about 600 
MPa), it can be concluded that the risk of cracking in the 
first forging cycle is unlikely.

A maximum of 1,100 MPa was calculated for the equivalent 
stress according to von Mises. This value is compared 
to the reported yield strength for the material at  
180 °C, which ranges from 650 MPa (cobalt-based alloy 
number 22) to 1,200 MPa (cobalt-based alloy number 60) 
according to the literature, depending on the alloy [6]. 
The equivalent stress can be used to determine when the 
material-specific yield point is reached and is thus used 
to estimate tool failure due to plastic deformation.

Fig. 6: Thermal simulation result without cooling 
effect; a) Overview of the entire simulation model; b) 
Temperature distribution; c) Equivalent stress according 
to von Mises.

Fig. 7: Forging tool 1 made of Celsit 21; a) Before the 
load tests; b) After the load tests; c) Forcedisplacement 
curve at minimum flash height.

If all results are compared accordingly, it can be 
concluded that plastic deformation in the area of 
the cooling channel partitioning can already be 
assumed to be very probable in the first cycle. 
In this context, all comparable alloys considered 
tend to fail in the critical range with the material 
characteristic values from the literature. The 
measured material characteristic value from the 
uniaxial cylinder compression tests is below the 
calculated equivalent stress according to von Mises. 
Accordingly, there is a high probability that plastic 
deformation will occur locally within the first forming 
cycle during the complete forming travel. This is also in 
line with the conclusion reached in the comparison with 
other grades of stellite.

In another numerical investigation, the cooling effect 
in one cycle was analyzed. For this purpose, a thermal 
simulation was carried out in which the components 
of the upper tool were modeled as rigid with thermal 
conduction and a substitute body for the cooling medium 
was introduced. The same maximum temperatures were 
calculated in the surface region of the mandrel as in the 
thermo-mechanically coupled simulation without cooling 
effect. Due to the cooling effect in the cooling channels, 
the depth of the heat input could be reduced. The area 
with the set initial temperature could be increased in 
the direction of the mandrel surface from the lowest 
point of the cooling channels by 0.2 mm (6.2% of the 
total distance). This clearly shows that the use of a 
cooling medium has a positive effect, even with a short 
exposure time of 0.14 s (process time) and can dissipate 
the introduced heat. In the experimental forging cycles, 
a longer exposure time, which is applied both during 
forming and during the transfer time of the semi-finished 
product, is expected to have a greater effect.

3.5 LOAD AND FORGING EXPERIMENTS

It became clear from the numerical investigations that 
further experiments should be carried out to evaluate the 
tool load before the serial forging tests. For example, in 
particular in run-in tests, the occurring tool load should 
be checked by a gradual increase of the stroke in order 
to avoid damage to the tool (cf. Fig. 7). In addition, the 
following should be considered when classifying the 
simulation results: Although there is a risk of plastic 
deformation in the first cycle, the highest stresses are 
located in a localized area inside the die. Due to the 
locally limited critical areas, it can be assumed that the 
plastic material behavior will not occur due to the lack of 
flow possibilities. Further-more, a positive effect due to 
internal cooling on the die temperature has been calcu-
lated. This effect is expected to be particularly effective 
over the course of several forg-ing cycles.
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Fig. 8: Forging tool 2; a) In the installed state in the 
machine; b) After 500 strokes.

Fig. 9: Load diagram; a) Tool 1, additively manufactured 
without cooling; b) Tool 2, additively manufactured with 
cooling; c) Tool 3, conventionally manufactured without 
cooling; d) Investigation area.

A total of three tools were tested. Tools 1 and 2 were the 
hybrid variants, and tool 3 was a conventional specimen 
made from quenched and tempered X38CrMoV5-1 
with a hardness of 48±2 HRC. For all tests, the forming 
temperature was 1,200 °C, the ram force 500 kN, and the 
burr path height 3.4 mm. Forging with 500 cycles was 
performed with all three variants, and only tool 2 was 
operated with cooling. Fig. 8 shows tool 2 as installed 
in the machine and following the tests after 500 strokes.

The use of tool 1 made of Celsit 21 allowed higher forming 
of the cylindrical semi-finished products, without the 
onset of failure. The maximum load applied in this test 
occurred at a measured ram force of 500 kN. The tool 
showed no crack initiation and thus suitability for forging 
applications.

The surfaces of the tools were measured before and after 
the tests on the VR-3200 3D profilometer from Keyence 
(cf. Fig. 9). The deviations in the range of 0.01 mm can be 
attributed to a remaining measurement inaccuracy and 
positioning deviation. Tool 1 shows no impairment of the 
surfaces.

The planned tempering and compression tests were also 
carried out with tool 1. Here, a medium temperature of 
30 °C was started and successively increased by 10 °C 
until 180 °C and 18 bar medium pressure were reached. 
Distilled water was circulated as the medium within the 
cooling system over a period of 1 h, and no leakage 
occurred. Nevertheless, the first tests were run without 
flow of the cooling medium to prevent uncontrolled 
leakage. The tool was then loaded in the forging process 
with two press strokes on a Eumuco press. During the 
subsequent application of media pressure, leakage 
occurred due to water escaping along the brazed seam.

The die stability was still intact, and no breaks were visible 
on the engraving. The die did not detach from the carrier, 
so tool 1 continued to be used. Subsequent forging tests 
continued without internal cooling due to the leakage. 
A total tool life of 500 strokes was achieved with tool 1. 
Lateral misalignment was observed after forging. Fixation 
was provided only by the dowel pins. It can be assumed 
that the misalignment caused by transverse forces during 
forging led to failure of the joint after the first few strokes 
and to leakage during cooling.

The die withstood the applied forging loads and did 
not break in the area of the flash track. This indicates 
sufficient strength of the material and the suitability of 
the composite material. The maximum depth of removal 
for the additively manufactured dies is significantly less 
than for the hot-work tool steel, which favors the insertion 
of the channel structure near the surface.

Tool 1 shows a pure increase in the profile height in the 
radius area, without any negative wear into the interior of 
the die being evident. The course of the surface profiles 
at tool 3, however, clearly indicates a dominant erosion 
within the stressed area. At tool 2, as already seen in 
the three-dimensional view, both directions of action are 
apparent. However, this shows the least impairment of 
the die surface in the mandrel radius. The cooling, which 
was applied to this tool continuously over the entire 
period of use, shows a positive effect, both in preventing 
the widening of the crack network and structural volume 
and through reduced wear depth.
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4 DISCUSSION AND CONCLUSIONS

The channels run below the stressed crown areas and 
have a rough surface. No particle deposits or deposits 
of the cooling medium can be observed in the channel 
passages. They do not show any visual signs of the 
propagation of a crack network below the surface, which 
could indicate a leakage cause. The wear phenomena 
are therefore far away from the areas of the cooling 
structures that cannot be detected with the naked 
eye. Based on this, it can be assumed that the cooling 
structures can continue to operate intact, even with 
multiple forging cycles. Reducing the distance between 
the cooling channels and the tool surface can therefore 
be considered useful in terms of improved tempering 
effect.

In the new concept, the engraving is embedded in a setting 
in the carrier (cf. Fig. 10). While soldering is still intended 
for joining, and the solder paste can also be added at the 
edges, this design allows for compensation of possible 
lateral forces. In the case of the layout implemented in the 
project, these forces can potentially lead to shearing of 
the engraving from the carrier. The manufacturing effort 
is only minimally increased in the implementation of this 
concept during the production of the carrier. In terms of 
cooling performance, reducing the channel spacing to 
the die surface layer, and increasing the channel surface 
area can serve the further optimization of the cooling 
effect and can be adapted to the individual cycle times of 
the industry and the corresponding heat input.

The properties of Celsit 21 demonstrate excellent 
suitability for forging applications. In addition to its 
resistance to the tempering effect typical of hot work 
steels, effective hardening occurs in the edge area of 
the highly stressed dies due to material compaction. Due 
to manufacturing reasons, the Celsit 21 dies have pores, 
which are closed near the surface during forging. Cracks 
in the crown area reduce the surface quality and can lead 
to breakouts with further use. The crack depth correlates 
with the applied mechanical load in the examined variants.

Fig. 10: Concept for further improvement to better 
absorb lateral forces.

It has also been shown that die tempering and forging 
temperature have a significant influence on tool wear 
behavior. To prevent critical crack formation, the use 
of additively manufactured dies with integrated cooling 
channels offers a new technological approach. Economic 
implementation could be achieved by reducing the volume 
of additively manufactured Celsit 21. In comparison to 
tool 3 made of hot work steel, all examined dies show a 
lower wear depth and thus suitability for die forging.

In summary, the results show that the use of stellite as 
die material in LPBF represents a promising opportunity 
to increase the tool life of forging dies and thereby reduce 
the piece costs of forged parts. The hybrid structure of the 
tool, consisting of an additively manufactured engraving 
and conventionally manufactured carrier, enables cus-
tomized supply and removal of the cooling medium and 
can contribute to a more economical production of forged 
parts. The conducted experiments have shown that 
the technology can also be successfully applied under 
industry-like conditions. For a perfect transfer to industry, 
it would be necessary to produce larger tools that are 
also designed in a hybrid shape. While the conventional 
production of the carriers using milling techniques is 
trivial, the challenge will be the production of additively 
manufactured components including cooling channels on 
a large scale. The challenges in detail will be the size of the 
printing platform, the temperature management in order 
to generate crack- and pore-free parts, and the duration 
for the printing job. While the technical issues might be 
solved by appropriate machines, the cost-effectiveness 
is another topic to consider. Nevertheless, the findings of 
this work can be utilized not only by the forging industry 
but also by other medium-sized industries such as tool 
manufacturers, foundries, and 3D printing companies. 
Overall, the findings represent an important step towards 
more cost-effective manufacturing.
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Abstract. For certain cardiovascular diseases, cannulas 
are implanted into the blood circuit. To match the patients 
individual anatomy of the heart, there is research for 
cannulas to be custom-designed and manufactured 
aided by 3D printing. However, cannulas have to hold 
very high standards with regard to the smoothness of 
their surfaces, as rough patches can lead to formation of 
blood clots. Therefore, this work uses computer vision to 
detect such patches as part of quality assurance. First, 
the produced cannula is scanned using a precise CT 
scanner and transformed into a 3D mesh object. Rough 
patches in an otherwise smooth but curved surface are 
detected by using cosine similarity between neighboring 
faces and a statistical evaluation. In the end, this method 
is able to raise a warning when curved surfaces are not 
smooth enough and visualizes the problematic patches. 
However, there is just limited access to test data currently 
and the scanner used needs to be upgraded.

1 INTRODUCTION

Additive manufacturing represents a significant 
advancement in the production of personalized medical 
devices. In the context of 3D-printed injection molds, the 
surface quality of the mold directly impacts the surface 
roughness of the resulting injection-molded components 
like the cannula. Inserting a cannula into the circulatory 
system is potentially dangerous, as a rough inner 
surface may result in the development of blood clots. 
This happens when components of the blood get stuck 
in indentations in the wall of the cannula and is further 
supported by slow blood flow. To present numbers for 
this geometric problem, the smallest components of 
blood are thrombocytes with a diameter between 1.5 �m 
and 3 �m. Blood clots can become life-threatening when 
plugging up blood vessels. Our use case is bound to 
analyzing cannulas which are tubular objects. However, 
there are cannulas with different radiuses and bend 
angles, which need to be supported by our approach.

To tackle these problems, the goals of this work are

1. Use computer vision to quantify the smoothness of the 
surface of a cannula with an unknown radius.

2. Visualize where harmful indentations in the surface are 
located.

The short-term application is to validate the surfaces 
of prototypes and samples. However, in the long term, 
we would like to validate the surfaces of every printed 
cannula so a non-destructing method is preferred.

2 RELATED WORK

Lavoué [Lav09] segments meshes by roughness 
to support applications like compression or robust 
watermarking. The approach includes local smoothing 
and comparing the original to the smoothed mesh as a 
rough surface is not very similar to its smoothed surface. 
Because of the smoothing, the approach is more suitable 
to detect rough areas of a larger size and is therefore not 
ideal for our use case.
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In [JPO+17], the authors use a 3D camera to scan the 
surface on the wings of an Airbus 320 to detect defects. 
The authors estimate normals and curvature values on 
point clouds and segment defects by a threshold for the 
curvatures, defined by an expert guess. Whereas the 
approach seems to be very promising, it only works for 
plane-like surfaces.

Pauly et al. [PMG04] analyze surfaces of point clouds by 
how likely it is for a point to be located on the surface of a 
point-sampled surface. The likelihood of a point to belong 
to the surface between discrete points is estimated by 
least-square fitting of interpolated surfaces. Generally, 
it is possible to use this approach to detect outliers. 
However, the detection of outliers would be influenced 
by a non-trivial relation between the resolution, the 
interpolation method, the fitting, and the shape of the 
object and its defects.

Rabbani et al. [RHV06] segment point clouds by 
smoothness. The key idea is to specify an allowed 
threshold for the difference between angles of neighboring 
surface normals and perform region growing. Defects 
can be segmented using their approach, but setting the 
parameters is difficult for our use case as the threshold 
for the angle between neighboring normals depends on 
the scan resolution and radius of the cannula.

3 MATERIAL UNDER TEST

The mold for the test cannula design was fabricated 
using a selective laser sintering (SLS) process with 
the EOS Formiga P100, employing EOS PA2200 material. 
The current layer height is 100 μm with the possibility 
of reducing it to a minimum of 50 μm in the future To 
eliminate excess powder, the surface underwent a 
cleaning process utilizing the Powershot system from 
DyeMansion. Subsequently, the three-piece mold was 
assembled and filled with the heat-curable liquid silicone 
rubber (LSR) NuSil MED 4960. The LSR was cured by 
placing the mold in an oven at 90 C for 12 hours. Following 
demolding, the silicone cannula underwent post-curing 
at 165 C for 10 minutes. To achieve a smoother surface 
finish, the cannula was partially coated with an RTV 
silicone dispersion through a dip-coating process. Fig. 
1 presents this cannula. Additionally, there is an earlier 
prototype made from the same CAD-model. The earlier 
prototype is called C1, the non-coated part of the current 
prototype is called C2 and the coated part is called C2C. 
For a fair comparison, every cannula is sliced into just a 
small tube so C1, C2 and C2C have the same shape.

4 APPROACH

There are various methods to scan surfaces of objects 
and analyze their smoothness, with different pros and 
cons. The method for analyzing the surface depends on 
the technique to scan the cannula.

4.1 RELEVANT 3D-SCANNING TECHNIQUES

An obvious choice to scan surfaces is to use a profilometer. 
However, optical methods like structured light scanning 
or interference microscopy require a non-transparent 
material or proximity to the surface. To access the inner 
surface of the cannula, it would be necessary to cut the 
cannula open. Thus, such methods are unsuitable for 
this application. Computed tomography (CT) scanning 
is an advanced imaging technique that employs X-rays 
to visualize internal structures, primarily for medical 
applications. Micro-computed tomography (μCT) is a 
specialized variant of CT that offers higher resolution 
imaging, characterized by voxel sizes in the micrometer 
range. Due to its typically smaller maximum specimen size 
compared to conventional CT systems, μCT is primarily 
employed for material specimens and small biological 
samples. μCT offers high precision with non-destructive 
scanning and is therefore the chosen technique for our 
application.

4.2 μCT-SCAN

Fig. 1: Cannula made with liquid silicone rubber and the 
Scanco μ45 μCT-Scanner to scan it. The transparent 
part of the cannula is coated to smooth the surface.
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The cannula was scanned using the Scanco μCT 45 (see 
Fig. 1) at 70 kV and 114 μA with a resulting voxel size of  
18 μm. Although the voxel size already yields high 
precision, even higher precision would be necessary 
to detect notches relevant for thrombocytes to get 
stuck. Nonetheless, the voxel size is sufficient to detect 
undesired artefacts generated by additive manufacturing 
with a layer height of 100 μm. To detect smaller structures, 
a higher resolution is needed. The quality of a 3D scan is 
always a trade-off between the resolution and the field 
of view (FOV) due to geometrybased magnification. 
A larger FOV comes with a smaller resolution and vice 
versa. To maximize the resolution, the object-to-source 
distance needs to be minimized. This distance is 
limited by the size and geometry of the object. For the 
cannula it would be possible to have an overview scan 
of the whole specimen with a reasonable resolution to 
analyze the surface structure and then scan regions of 
interest with a maximum resolution. This functionality 
is supported by PXR CT-COMPACT nano for example. 
With these information, both a general and a few specific 
statements about the surface quality of the cannula 
could be generated. Using the precisely scanned ROIs, a 
conclusion can be drawn to the whole surface. However, 
the used scanner is not capable of this function. Thus, 
this work focuses on the data analysis approach and 
algorithm.

For further evaluation, a surface mesh is desired. 
Compared to a point cloud, a surface mesh has the benefit 
of information about neighborhood relationships. The CT 
provides DICOMs, which are stacks of 2D-images. Silicon 
and air result in very different pixel values and are easy 
to separate. Using 3D-Slicer [KPV14,BWH24], a surface 
mesh is exported.

4.3 ROUGHNESS OF ADJACENT FACES

Common definitions for roughness like the roughness 
average RA require an expected value for each measured 
point, which is usually defined by a mean line through 
the measurements. The surfaces of cannulas are curved 
and may be bent. Whereas a plane fitting could yield the 
expected value for each point, it would introduce some 
error and supporting a variety of shapes would be difficult. 
Therefore, we focus on other methods. To quantify 
smoothness of a surface, the first step is to quantify 
smoothness in adjacent faces in the surface mesh. A face 
is the smallest surface component of a mesh, usually a 
triangle, and is flat by definition. Roughness can only 
exist between adjacent faces. Therefore, we compare 
the normal vectors of adjacent faces as they tell in which 
direction a face is pointing. The cosine similarity SC is 

a metric which tells how much two vectors point into 
the same direction. It is calculated similar to the angle 
between two vectors with the difference of not applying 
the inverse cosine; the dot product of the vectors is 
divided by the product of the magnitude of the vectors:

(1)

(2)

(3)
(4)

The domain of the cosine similarity is [-1; 1]. A value of 
1 tells that two vectors are coplanar and pointing into 
the same direction, a value of 0 indicates a difference of 
90° and a value of -1 tells that two vectors are coplanar 
but pointing into opposite directions. The optimal cosine 
similarity between normals of faces on a curved surface 
depends on the radius and the resolution of the scanner. 
Theoretically, an infinitely small voxel size results in almost 
coplanar adjacent faces. The cosine similarity of their 
normals would approach 1 without ever reaching 1. As a 
rule of thumb, a high resolution scan of a tube with a small 
diameter results in cosine similarities close to 1. As it is 
ambiguous for two normals to have a cosine similarity of -1 
or 1, the absolute is applied to SC to define the roughness 𝑟.  
 
To reason about the roughness of a face, the face has to 
be compared to its 1 to n adjacent faces. Therefore, the 
roughness 𝑟𝑖 of a face 𝑖 is modeled by the minimum of the 
absolute cosine similarity of its normal to all the normals 
of its adjacent faces Ai:

4.4 DETERMINING ROUGHNESS OF SURFACES BY 
STATISTICAL EVALUATION

The surface of a cannula is expected to be mostly smooth 
enough, even if defects are present. This assumption 
allows using a statistical approach to analyze the cosine 
similarities of neighboring face normals and to separate 
outliers. The roughnesses R of each face are expected 
to be left skewed, as they are capped to 1 by definition 
of the cosine similarity. For skewed distributions, it is 
common to call a sample an outlier when it has a distance 
to the boundary of the interquartile range (IQR) of 1:5  
IQR [Dek05]. The IQR itself is defined as the difference 
between the 0:75-quantile and the 0:25-quantile. 
Building on this, the faces of the mesh are separated into 
outliers O and inliers I:

𝐼= 𝑅 \ 𝑂
𝑂= �𝑟 ∈ 𝑅 | 𝑟 < 𝑞𝑛 (0.25 ) - 1.5  ·  𝐼𝑄𝑅 𝖵 𝑟 > 𝑞𝑛 (0.75 ) + 1.5  ·  𝐼𝑄𝑅 �
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(a) Cannula C1

(b) Cannula C2

Ideally, the outliers O build an empty set. This separation 
of in- and outliers adapts to the input mesh and allows 
finding outliers without much knowledge of the resolution 
or shape of the object. As the method does not require 
comparing the surface with another object, the approach 
can be categorized as a no-reference method.

5 RESULTS

Performing the statistical evaluation on the three cannulas 
validates the expectations made in 3: C2C is smoother 
than C2, which is smoother than C1. This can be seen in 
the average, median and standard deviation presented 
in Table 1. Comparing average and medians is difficult, 
however, as it is neither known which minimal value 
describes a rough tube nor which value describes a perfect 
tube given the scan resolution and radius. On the other 
side, comparing the spread of the inliers is meaningful. 
The standard deviation of C2 is 2.5 times higher than the 
standard deviation of C2C and the standard deviation of 
C1 is even 11.2 times higher than the standard deviation 
of C2. Reference metrics for each cannula may be gained 
by manufacturing and evaluating multiple cannalus of the 
same type which will be investigated in further work. Fig. 
2 presents the distribution of roughness in the smooth 
part of the surfaces of the cannulas.

Tab. 1: Statistical evaluation performed on the three 
cannulas. Note that the division          is performed on 
the non-rounded values.

Fig. 2: With the tubular shape and a high scan resolution, 
the distribution of the roughness of inliers is left skewed 
and close to 1. The coated cannula has by far the least 
spread of its smooth faces.

Sadly, the precision of the scanner or the processing 
chain is not sufficient for a proper detection of minor 
defects on the coated surface. The pipeline from raw CT-
data to the surface mesh relies on external software and 
algorithms. As further processing depends strongly on 
the angle between adjacent faces, more control over the 
export to the surface mesh could be beneficial to handle 
noise.

Fig. 3 presents the visualization of the outliers on the 
cannulas and a close up view on the backside of the inner 
wall of C2C to grab a better view on the outliers. The 
outer surface of C1 is covered by stair-stepping which 
is detected properly. C2 is more smooth but has a few 
defects which are also detected. The detection of rough 
patches on C2C however is a little problematic as lots 
of minor rough patches are detected on a very smooth 
surface. A close look on these patches reveals the inner 
surface to be covered by those patches very uniformly. 
This is a hint for a bad signal-to-noise ratio, especially 
as the outer surface with the smaller curvature is less 
effected but in a similar pattern. The surface seems to be 
smooth enough to be influenced by the noise of the μCT 
or the processing chain. These patches also explain why 
the relative number of outliers ofC2C is the lowest by just 
a small margin. Interestingly, the statistical evaluation is 
robust enough to tell that C2C is the smoothest cannula.
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(c) Cannula C2C

(d) Cannula C2C

Fig. 3: Visualization of rough patches in red on a segment 
of the scanned cannulas. (d) shows evenly distributed 
minor outliers on the inner wall which are a hint for a bad 
signal-to-noise ratio.

6 CONCLUSION

In this paper, we presented an approach to quantify 
smoothness and detect rough patches in a mesh which 
requires low knowledge about the shape. The only 
assumption about the surface is that it is mostly smooth. 
To be able to detect defects on inner surfaces without 
destroying the object, μCT was used to scan the object. 
The processing chain from raw μCT-data to the mesh 
needs more investigation though and a more precise 
scanner would be beneficial.
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Abstract. In der Strukturdynamik gewinnen bildbasierte 
Verfahren zur Schwingformmessung an Bedeutung, da 
sie kontaktlos Schwingformen aus Videodaten erfassen 
können. Ein Vergleich mit numerischen Vorhersagen aus 
Finite-Elemente-Berechnungen (FEM) ist notwendig, 
stellt jedoch eine Herausforderung dar, da die Datensätze 
im gleichen lokalen Koordinatensystem vorliegen 
müssen. Diese Arbeit präsentiert einen Ansatz zur 
Transformation von 3D-FEM-Schwingformdaten, um sie 
mit experimentellen Daten zu vergleichen. Die Methodik 
wurde an mehreren Datensätzen getestet und zeigte 
vielversprechende Ergebnisse bei Ähnlichkeitsmaßen 
wie dem Modal Assurance Criterion (MAC) und der 
Normalized Cross-Correlation (NCC).

Keywords. Projektion, Schwingform, Modalanalyse, 
GPGPU

1 EINFÜHRUNG

Für mechanische Systeme können Schwingformen 
sowohl experimentell als auch numerisch erfasst werden. 
Durch die Kombination experimenteller Messungen 
und numerischer Simulationen ist eine umfassende 
Untersuchung der dynamischen Eigenschaften 
solcher Systeme möglich. Für diese Kombination ist es 
jedoch erforderlich, die gemessenen Daten mit den 
Simulationsergebnissen zu vergleichen. Damit dieser 
Vergleich mit traditionellen Ähnlichkeitsmaßen durchge- 
führt werden kann, muss eine Kompatibilität der Daten 
gewährleistet sein. Im Allgemeinen ist eine Schwingform 
wie folgt definiert:

Denition 1. Eine Schwingform, auch Eigenmode oder 
Modalfunktion genannt, ist eine vektorwertige Funktion 
𝐮 : Ω ⊂ ℝ3 → ℝ3, die die räumliche Verteilung der 
Schwingungen eines dynamischen Systems beschreibt. 
Hierbei ist Ω der betrachtete Körper, und 𝐮(p) gibt die 
Verschiebung in jedem Punkt 𝑝 = (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) ∈ Ω an. Eine 
Schwingform ist mit ihrer Eigenfrequenz ω verbunden, 
die die Frequenz beschreibt, bei der Ω in dieser Form 
schwingt.

2 DATENSTRUKTUREN

Im folgenden beschreiben wir die mathematische Struktur 
der beiden Datensätze, die es zu vergleichen gilt.

Abb. 1: Links: Visualisierung einer Schwingform, die für 
eine Autobremsscheibe mit der FEM berechnet wurde. 
Rechts: Entsprechende Schwingform der bildbasierten 
Messung der Autobremsscheibe.
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2.1 FEM - SCHWINGFORMBERECHNUNG

Die Schwingformberechnung mit der Finite-Elemente-
Methode (FEM) ermöglicht die Analyse der dynamischen 
Eigenschaften eines Körpers Ω ⊂ ℝ3 auf Grundlage eines 
detaillierten CAD-Modells. Die Schwingformberechnung 
erfolgt auf einer diskreten Menge 𝐕 ⊂ Ω, die aus dem 
CAD-Modell generiert wird. Die Schwingform wird dann 
durch die Menge

(1)

(2)

(3)

ausgedrückt. Zusätzlich wird die Menge V durch eine 
Tetraederisierung aus Tetraedern 𝑻𝑗 strukturiert, die die 
Geometrie des Körpers approximieren: Ω ≈𝖴𝑗∈J𝑻𝑗 . Jeder 
Tetraeder 𝑻𝑗 wird durch seine vier Eckpunkte deniert und 
hat vier Flächen, die durch die Triangulierungen {𝑆𝑗1, 𝑆𝑗2, 
𝑆𝑗3, 𝑆𝑗4} gegeben sind, wobei jede Fläche 𝑆𝑗𝑘 ein Dreieck 
ist, das durch drei der vier Eckpunkte des Tetraeders 
gebildet wird. Die Oberäche ∂Ω lässt sich dann durch 
eine Triangulierung aus Dreiecken 𝑆𝑘 darstellen, die eine 
Teilmenge der Tetraederisierung ist:

2.2 BILDBASIERTE SCHWINGFORMMESSUNG

Schwingformmessungen die auf Videodaten basieren, 
messen die Schwingformen in der Bildebene E ⊂ ℝ2 
der Kamera und können diese daher nur in den lokalen 
Koordinaten (𝓍 ,𝑦) ∈ 𝐸  ausdrücken. Nach der Analyse 
eines Videos mit der Auflösung 𝑤×𝘩 erhalten wir einen  
Tensor  𝐈 der Dimension  𝑤×𝘩x3. Dieser Tensor 
repräsentiert an seinen Einträgen (𝑐, 𝑟), die in die Bildebene 
projizierte Schwingform. Die Beziehung zwischen den 
Pixelindizes und den Schwingformwerten wird durch eine 
Gleichung der Form

beschrieben. Hierbei ist ι : 𝑝 → (𝑐, 𝑟) eine projektive 
Abbildung die Punkte 𝑝 ∈ ℝ3 in Pixelindices  
(𝑐, 𝑟) ∈𝑤×𝘩 abbildet und ℳ eine lineare Transformation die 
𝐮 aus dem lokalen Koordinatensystem auf der Oberäche 
von Ω in die Bildebene 𝐸  transformiert. Konkrete Setups 
und Messungen mit dieser Methode beschreiben wir in 
[3].

3 SCHWINGFORMPROJEKTION

Das Ziel besteht darin, die Darstellung aus Kapitel 
2.1 in die Form (3) zu überführen. Dafür müssen die 
Geometriedaten aus der FEM mit den Kameraparametern 
der bildbasierten Schwingformmessung in Beziehung 
gesetzt werden.

Dazu wird die Kamera als aner Raum 𝔸3 im ℝ3 aufgefasst. 
Der Ursprung wird durch den Translationsvektor  
t ∈ ℝ3 festgelegt, während die Orientierung durch die 
Rotationsmatrix 𝐑 ∈ ℝ3×3 deniert ist. Die Größen 𝐭 und 𝐑 
repräsentieren die extrinsischen Parameter der Kamera 
und beziehen sich relativ zu ∂Ω. Diese Parameter 
beeinussen nicht direkt die Projektion, bestimmen jedoch, 
welche Punkte 𝑝 ∈ ∂Ω in 𝐸  abgebildet werden.

Zur Bestimmung von 𝐭 und 𝐑  kann eine Homographie 
zwischen 𝐸  und ∂Ω berechnet werden. Hierfür sind vier 
Punktepaare (𝑝𝑖, 𝑞𝑖) ∈ E × ∂Ω für 𝑖= {1, 2, 3, 4} erforderlich, 
aus denen eine lineare Abbildung berechnet wird [5, 
tutorial_homography]. Alternativ kann der Benutzer 
die Werte für 𝐭 und 𝐑  interaktiv eingeben, indem er die 
3D-Geometrie aus der FEM-Berechnung manuell so 
ausrichtet und verschiebt, dass die Konguration wie in 
Abb. 2 erreicht wird.

Abb. 2: Links: Kameraframe, ∂Ω und die Bildebene 𝐸 
so angeordnet im ℝ3, dass die Abbildung rechts durch 
Projektion berechnet werden kann.

Die projektive Abbildung der Szene auf die Bildebene 
wird dann durch die intrinsischen Parameter der Kamera 
festgelegt. Um die Abbildung der 3DPunktkoordinaten 
in die Pixelindizes zu bestimmen, betrachten wir den 
projektiven Raum ℙ2, dessen Elemente alle Geraden 
durch den Ursprung in R3 repräsentieren, formal deniert 
man ℙ2 := (ℝ3 \ {0} / ∼, wobei (𝑥1, 𝑦1, 𝑧1) ∼ (𝑥2, 𝑦2, 𝑧2) gilt, wenn  
∃λ ∈ ℝ\ {0}  so das (𝑥2, 𝑦2, 𝑧2) =  λ ·  (𝑥1, 𝑦1, 𝑧1) erfüllt ist. Die 
Projek tion der Objektoberäche ∂Ω auf ℙ2 ist dann 
gegeben als:
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Abb. 3: Übersicht der Schwingformprojektion, als Eingabe 
dienen die 3D Geometriedaten sowie die assozierte 
Schwingform U aus Kapitel 2.1, die Kameradaten R und t 
als auch die Dimensionierung des Bildtensors aus Kapitel 
2.2 die als Viewport die Dimension des Framebuers 
vorgibt.

Da diese Projektion nicht injektiv ist, denieren wir die 
sichtbare Projektion durch V (proj(∂Ω)) =  {(𝑥, 𝑦, 𝑧) ∈ ∂Ω | 
∃ℓ ∈ proj(∂Ω) : (𝑥, 𝑦, 𝑧) = d(ℓ)} , wobei d(ℓ) = arg min(𝑥, 𝑦, 𝑧)∈ℓ  
∥(𝑥, 𝑦, 𝑧)∥. Da in unserer Anwendung von rektizierten 
Bildern ausgegangen wird, muss die Linse und deren 
Verzerrung nicht modelliert werden. Das Lochkamera-
Modell P : p → 𝑝/z𝑝 D, 𝑝 ∈ ℝ3 mit 𝑧𝑝 ≠0 und D >  0 ist daher 
ausreichend, um die Projektion auf die Bildebene anhand 
von Sichtstrahlen zu modellieren. Die Brennweite 
wird dabei über den Parameter D und die 𝑧 Achse als 
Sichtachse festgelegt. Da der Bildsensor aufgrund 
seiner Dimensionierung, d.h. Breite 𝑤 oder Höhe h, 
begrenzt ist wird das Sichtfeld durch die Brennweite 
und Dimensionierung eingeschränkt. Das horizontale 
Sichtfeld lässt sich mit                           bestimmen.[1] 
Aufgrund der Symmetrie des Sichtkegels ergeben 
sich die Grenzen für das Sichtfeld zu 𝑥min = −𝑥max und  
𝑦min = −𝑦max. Die reellen Koordinaten (𝑥proj, 𝑦proj) :=

mit der wir Simulationsergebnisse an den Knoten 𝑝 den
Pixeln 𝒄, 𝑟 zuordnen können. Da 𝐮(𝑝)| ∂Ω ∈ 𝑁∂Ω ⊕ 𝑇∂Ω für 𝑝 ∈ ∂Ω
und 𝐑 eine orthonormale Matrix ist, vereinfacht sich die 
Transformation ℳ: T∂Ω ⊕ N∂Ω ↦ 𝐸 , 𝐮𝑝 → 𝐼ι(𝑝) zu

(4)

[1, Kapitel 10.4.2 Surface Normals].

1 𝑃 muss für spezische APIs spezische Bedingungen erfüllen die in der 

jeweiligen Dokumentation speziziert sind, z.B. in [4, GluPerspective_

code] oder [1].

Damit erhalten wir eine bijektive Abbildung :

5 ERGEBNISSE

Wir evaluieren unsere Ergebnisse mit drei verschiedenen 
Ähnlichkeitsmaßen: Modal Assurance Criterion, 
Normalized Cross Correlation und einem Dierenzbild.

4 IMPLEMENTIERUNG

Für die Implementierung können die Vorteile der 
programmierbaren Render-Pipeline genutzt werden. 
Sie ist Bestandteil jeder modernen Grakkarte und 
kann über verschiedene APIs oder Frameworks 
angesprochen werden, z.B. mit OpenGL, Direct3D oder 
VTK. Sie ist äuÿerst exibel und kongurierbar und wird 
vereinfacht in zwei Phasen unterteilt: Vertexshading 
und Fragmentshading.[1,10.10 The Realtime Graphics 
Pipeline] Alle 𝑝𝑖 ∈ 𝐕  passieren diese Phasen, und zwar so, 
dass die Kombinatorik von 𝐒 beachtet wird wenn wir die 
Renderpipeline für Dreiecke kongurieren.[4]

Im Vertexshader werden Kameratransformationen 
und Projektionen1 auf jedes 𝑝𝑖 ∈ 𝐕  angewendet, um die 
Positionen in der Bildebene 𝐸  festzulegen.

Zwischen den Positionen in 𝐸  werden alle Attribute, die 
mit pi assoziert sind nach dem kongurierten primitiv 
interpoliert bevor die Attribute an den Fragmentshader 
übergeben werden. Im Fragmentshading, erhalten 
die Pixel ihre Farben, indem Farbwerte aus den 
übergebenen Attributen generiert und an die im 
Vertexshader bestimmten Positionen in den Framebuer 
geschrieben werden.[1,10.10] Der Framebuer sollte so 
konguriert werden, dass anstelle von Integer Float Werte 
gespeichert werden können und V (proj(∂Ω)) implizit 
durch die Verwendung eines Tiefenbuers konstruiert 
wird.[2] Nachdem durchlaufen der Renderpipeline für alle 
Dreiecke in 𝐒 kann das Ergebniss aus dem Framebuer 
ausgelesen werden.

Abb. 4: Der Datensatz mit dem wir unsere Ergebnisse 
evaluieren. Oben: Projezierte numerisch berechnete 
Schwingform und mittig: aus Videodaten extrahierte 
Schwingform, jeweils eingefärbt nach Betrag. Unten, das 
Dienrenzbild der beiden Datensätze.

∈ (𝑥min, 𝑥max) × (𝑦min, 𝑦max) werden auf ganzzahlige 
Pixelkoordinaten gerundet :
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Das Modal Assurance Criterion (MAC) kann verwendet 
werden, um reellwertige Ergebnisse aus der Simulation 
mit komplexwertigen Ergebnissen aus einer bildbasierten 
Schwingformmessung zu vergleichen. Es bildet zwei 
diskrete Schwingformen 𝐔A und 𝐔B auf eine reele Zahl ab, 
MAC : ℝ3 × ℂ3 ↦ [0, 1], wobei

. Für die in Abb. 4 abgebildete Schwingform erhalten wir 
nach dem MAC einen wert von 95%. Die Normalized Cross 
Correlation (NCC) ist im Wertebereich [−1, 1] deniert, 
deswegen verwenden wir für unsere Evaluierung eine 
normalisierte Form, NCCnorm : ℝ3 × ℂ3 ↦ [0, 1] die negative 
Korellationen ignoriert

. Für die in Abb. 4 abgebildete Schwingform erhalten wir 
nach dem NCC einen wert von 99%. Ein Dierenzbild(vgl. 
Abb.4) 𝐃 = 𝐔A - 𝐔B ist ein Punkt zu Punkt-Vergleich 
und kann auf den Bereich [0, 1] normalisiert werden:  
𝐃norm = | D|  / max| D|  . Während das Dierenzbild spezische 
Abweichungen in der Bildebene lokalisiert, liefern MAC 
und NCC als globale Ähnlichkeitsmaÿe eine quantitative 
Bewertung der Übereinstimmung zwischen den 
Datensätzen.

6 ZUSAMMENFASSUNG

Wir haben in dieser Arbeit ein Verfahren konstruiert, 
das es ermöglicht die Ergebnisse numerischer 3D 
Schwingformsimulationen mit den Ergebnissen 
bildbasierter Schwingformmessungen über traditionelle 
Metriken zu vergleichen. Mit diesem Werkzeug ist 
es nun möglich weitere traditionelle Verfahren, die 
strukturdynamische Messungen und Simulation 
verbinden zu nutzen.
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Abstract. Depth estimation from stereo cameras is a 
fundamental Computer Vision task with many applications 
in automated driving, robotics, scene reconstruction, and 
medical diagnosis. Depth measurements are based on 
calibration parameters which are computed in a special 
calibration procedure. In practice, camera orientations 
may change slightly over time due to mechanical 
or thermal effects. Then, calibration parameters no 
longer match the current stereo camera. This results 
in inaccuracies in the depth measurement and even 
complete malfunctions.

We propose a method for the evaluation and optimization 
of the calibration accuracy during use of a stereo camera. 
It is based on automatically selected image regions and 
the rectified stereo configuration. The evaluation monitors 
the actual accuracy of the calibration. The optimization 
adjusts the calibration parameters. The time-consuming 
recalibration using calibration patterns is avoided.

Keywords. Accuracy · Calibration · Stereo · Camera · 
Optimization · Online

(a) Rectified stereo image

1 INTRODUCTION

Stereo cameras are used in a large variety of applications 
to measure the depth of a 3D scene. For highly accurate 
measurements, the imaging properties of the stereo 
camera must be known. These properties are determined 
in a separate procedure known as calibration using 
special calibration patterns. Camera calibration is a 
time-consuming, complicated, and semi-automatic task 
and there are several approaches for the optimization 
of the calibration parameters [7,13,6].The accuracy of 
the calibrations depends on the respective calibration 
procedure. However, it has been shown that the relative 
alignment of the cameras change during use due to 
vibration and mechanical or thermal effects [3]. Thus, 
accurate stereo calibration cannot be guaranteed over 
long periods [14,9]. Even well-established datasets 
have significant systematic errors resulting from sub-
optimal calibration parameters for different recording 
days. In most cases, the camera orientations are subject 
to changes during data acquisition and the camera 
parameters are not adapted.

Small errors in the camera parameters lead to significantly 
decreased reconstruction accuracy [5,15,9]. For given 
disparity error Δ𝐝, the range uncertainty increases 
quadratically with distance [2]. If vertical misalignment in 
the rectified stereo image occurs, corresponding pixels 
do not have the same y-coordinate (same scanline) and 
traditional stereo matching algorithms such as SGM [8] 
provide suboptimal results. Hence, vertical misalignment 
should be avoided.
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(b) Vertical disparities dy for automatically selected 
corresponding image points in the rectified image pair 
in Fig. 1a. We show dy with respect to the x-coordinate 
(left) and colorcoded with (𝓍 /𝑦) position in the left stereo 
image.

Fig. 1: Visualization of vertical disparities dy in pixels 
for the stereo camera in use. For rectified images 
computed from accurate stereo calibration parameters, 
the vertical disparity should be zero for all correct point 
correspondences. They have green color in the right 
visualization of Fig. 1b. In this example, significant errors 
with dy > 0 (red color) occur.

(a) Rectified stereo image

To quantify the calibration accuracy of stereo camera 
systems, we evaluate the vertical misalignment 
using corresponding image points for rectified stereo 
image pairs. To demonstrate, vertical disparities dy of 
corresponding image points are visualized in Fig. 1 for a 
rectified stereo image pair captured several days after 
calibrating the cameras. We show dy for corresponding 
points with respect to the x-coordinate (Fig. 1b, left) 
and color-coded with respect to the (𝓍 /𝑦) position (Fig. 

1b, right) in the left stereo image. The example shows a 
large systematic error with dy > 0 in the left part of the 
image. Thus, the calibration parameters no longer match 
the current camera configuration. The proposed measure 
for stereo calibration accuracy is used to optimize the 
calibration parameters. The optimization procedure 
minimizes the vertical misalignment in the rectified 
images. We demonstrate that the resulting images have 
significantly reduced stereo calibration error.

2 Accuracy of Stereo Calibration

Usually, stereo images and cameras are transformed 
in rectified stereo configuration using a preprocessing 
step [12]. The rectification computes new extrinsic 
camera parameters for which both cameras share the 
same rotation angles and image target plane. It follows, 
that corresponding image points in left and right image 
have the same ycoordinate which eases the analysis 
significantly. Then, the depth z is calculated from the 
horizontal disparity d𝓍 , the baseline b, and the focallength 
𝑓 as 𝓏 =  𝑓  · b/d𝓍  . For a reasonable rectification output, 
accurately calibrated cameras are required. Otherwise, 
a vertical offset dy is encountered when comparing 
corresponding points. Inversely, this offset can be used 
to quantify the accuracy of the original calibration.
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(1)

(3)

(2)

The mean of the absolute vertical disparities for all 
corresponding n features points is [3]:

The mean of the vertical disparities ϵ in equation (1) 
shows the systematic error resulting from inaccurate 
calibration parameters and is independent from the 
feature localization error. The absolute vertical disparities 

(b) Vertical disparities dy for corresponding image points 
in the rectified image pair in Fig. 1a with dy with respect to 
the x-coordinate and the (𝓍 /𝑦) position in the left stereo 
image.

Fig. 2: Visualization of the vertical disparities dy with 
optimized parameters. Most correspondences have a dy 
near zero and have green color in the right visualization 
of Fig. 2b. The mean vertical disparity is ϵ = 0.08 px. The 
significant error shown in Fig. 1b is eliminated.

Fig. 3: Depth maps computed by SGM (Semi-Global-
Matching) for the rectified stereo images from Fig. 1 
(above) and the optimized calibration as shown in Fig. 2 
(below).

The resulting relative position 𝐶𝑟 and angles for the stereo 
camera in the example experiment are as follows:

For the stereo calibration accuracy measure, we 
make use of scale invariant keypoint detection and 
descriptor computation. For keypoint detection, 
classical approaches still provide higher subpixel 
accuracy compared to machine learning approaches. 
As shown in [4], A-KAZE [1] keypoints provide dominant 
subpixel localization accuracy. To ease the analysis, 
stereo images and cameras are rectified. We assume 
a small, but nonzero vertical offset dy and limit the 
correspondence analysis to a small search space. Thus, 
the probability of outliers, i.e., wrongly established 
correspondences should be small. The disparity Δ𝐝 for 
each corresponding feature point pair 𝐩𝑙, 𝐩𝑟 is defined as  
Δ𝐝 = 𝐩𝑟− 𝐩𝑙 =  (d𝓍 , dy)𝑡. The mean of vertical disparities for 
all corresponding 𝑛 features points is [3]:

|ϵ| in equation (2) provides the magnitude of the error. For 
the example in Fig. 1, 𝑛 = 1233 corresponding keypoints 
are established.We obtain ϵ = 1.79 px and |ϵ| = 1.86 px.

3 OPTIMIZATION OF STEREO CALIBRATION

For the optimization of camera parameters, the mean 
vertical disparity (equation (2)) is minimized [3]. For 
each iteration, images and cameras are rectified and 
correspondences are established to obtain the cost 
function value ϵ as described in Sect. 2. We optimize 
6 parameters (relative position and angles of the right 
camera).

For the new camera parameters, 𝑛 = 1217 keypoints 
are obtained resulting in ϵ = 0.11 px and |ϵ| = 0.55 px. 
The corresponding rectified images are shown in Fig. 
2a. For validation, the verical disparities are shown 
in Fig. 2b. Compared to the original versions (Fig. 1), 
a significant decrease of the vertical disparities is 
visible. The systematic error diminishes. In Fig. 3 we 
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compare depth maps computed by SGM (Semi-Global-
Matching) [8] as implemented in OpenCV. Similar to the 
experimental results in [10], a significant improvement 
is achieved for the camera parameters optimized with 
our approach (below) compared to the original stereo 
calibration (above). Currently, it is unclear, how much 
these calibration errors affect machine learning models 
for stereo depth estimation. Initial tests with RAFT-Stereo 
[11] indicate that these approaches appear less sensitive 
to small calibration errors. But, an accuracy analysis 
requires much more effort since the performance is 
dependent on both train and test datasets and their 
calibrations. In [3], it is shown that stereo vision datasets 
have various calibration error structures.

For classical depth estimation methods, cf. Fig. 3, our 
experiments show the practicability of the parameter 
optimization. Since no calibration patterns are needed, 
this procedure can be applied to adjust the camera 
parameters during acquisition as Onlinecalibration.

4 CONCLUSIONS

Stereo cameras in use are subject to thermal and 
mechanical stresses that lead to fluctuations in the 
relative alignment of the two cameras. With the developed 
method, a consistently high accuracy of depth estimation 
can be ensured during use. Therefore, a keypoints 
correspondence analysis with high localization accuracy 
is employed. From the keypoints, vertical disparities 
are computed. The accuracy measure provides the 
possibility for error control and indicates the need for a 
recalibration.

The method is applied to self-recorded stereo images 
of a test vehicle. The calibration errors occurred under 
heavy mechanical stress caused by vibrations, e.g. from 
driving on cobblestones, are corrected. The proposed 
methodology enables Online Calibration since calibration 
patterns are not needed.

This work was partially supported by the German Federal 
Ministry of the Environment, Nature Conservation, Nuclear 
Safety and Consumer Protection (GreenAutoML4FAS project 
no. 67KI32007A).
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Abstract. Systems based on Machine Learning (ML-
based systems) are currently employed in numerous 
applications, including the recognition of access 
authorizations, vehicles, and individuals in traffic. The 
fundamental technology underlying these examples is 
deep neural feedforward nets. A substantial proportion of 
these applications are safety-critical, and the accuracy 
and precision of their classifications are of paramount 
importance. The question thus arises as to how the 
new systems can be demonstrated to fulfill these 
requirements.

This paper presents a novel systematic approach 
developed in the research project KI-LOK. The approach 
is based on the concept of probabilistically extended 
ontologies (PEON). It considers the statistical nature of 
these ML-based systems and permits the derivation of 
test end criteria. Moreover, this approach is consistent, 
whereby if developers and independent testers have 
worked in accordance with the prescribed methodology, 
they will receive comparable quality values.

This paper employs an illustrative example to demonstrate 
that the statistical nature of ML-based systems requires 
the development of novel testing concepts. One potential 
solution to this issue is the probabilistic extension 
of ontologies, which is subsequently described and 
illustrated by a case study from the KI-LOK project.

Keywords. Test and Statistic for ML Based Systems 
· Verification of accuracy / precision of neural nets · 
Probabilistically Extended Ontology (PEON) · Sampling 
Abstract Test Data

1 INTRODUCTION

The application of machine learning (ML) systems has 
proliferated across a diverse range of domains, including 
those that are safety-critical. Furthermore, an increasing 
number of experts are issuing warnings about the 
potential uncertainties and risks associated with the 
uncontrolled and accelerated development of artificial 
intelligent (AI) systems [2]. This raises the question of 
how such systems can be qualitatively assessed, even 
independently of development.

In the research project KI-LOK we developed a black 
box test for object recognition systems based on the 
systematic software test. This test addresses some of 
the outstanding questions such as:

– How and to what extent should test data be 
selected for the quality assurance of an AI system? 
– How should the executed tests be evaluated? 
– What statement about the quality of the test 
object can be derived from the executed tests? 
– When should one stop testing (Completion Criteria)?

Furthermore, this approach can be extended to a 
multitude of other, more general systems,see [15,8,16].

This article begins with an overview of the rationale behind 
the use of statistics in this context. It then introduces 
the concept of probabilistically extended ontologies, as 
outlined in the referenced literature, [16]. This method 
extends the category partition or classification tree 
method, replacing the combinatorial criteria with a 
statistical approach. This methodology allows for the 
systematic resolution of the aforementioned questions, 
thereby providing a development-independent test 
methodology. The aforementioned activities will be 
integrated into an autonomous test process. By means of 
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illustrative examples drawn from the railroad industry, we 
demonstrate how this procedure can be implemented in 
practice. In addition, elements of the methodology can be 
used to delineate and evaluate balanced, comprehensive 
training data. This latter point will be discussed in future 
work.

2 ML-BASED SYSTEMS AND STATISTICS

In contrast to conventional software, machine learning 
(ML) software is not developed on the basis of rules; rather, 
it learns inductively from a large number of examples. This 
has a number of consequences. For example, fixing bugs 
in these systems is not a straightforward process, nor is 
it possible in most cases! The question itself is also worth 
considering: What is an error in an object recognition 
system? A closer look reveals the problems.

Example 1 It is evident that a classification program designed 
to differentiate between dogs and cats based on visual cues 
would yield erroneous results if it identified a Siamese cat as 
a German shepherd. Nevertheless, if the system provides the 
correct response with greater frequency than a human, it will 
be employed regardless. The quality of such a system is not 
determined by the individual case, but rather by statistical 
analysis. In order to ascertain the classification of the input 
image as either cat or dog, Bayesian conditional expectation 
is employed.

Accuracy and precision are calculated as the 
averaged values over a large number of test results. 
In addition, the learning process uses statistical 
quantities such as maximum entropy resp. likelihood 
to facilitate optimization. ML-based systems function 
statistically, thus necessitating statistical testing. 
A straightforward Gedankenexperiment can be employed 
to illustrate this concept.

Example 2 Look at the simple classification system outlined 
in Example 1, which can distinguish between cats and dogs 
in animal images. Suppose we received ground truth data 
stating that dogs are correctly identified 95 % of the time, while 
cats are correctly identified 85 % of the time. What, then, is 
the accuracy of the system, expressed as the mean value of 
correctly recognized images?

A tester tests the system using 900 dog and 100 cat 
images and arrives at the conclusion that the accuracy 
of the system is (900*0.95+100*0.85)⁄1000=94%. 
 
A second tester employs 900 images of cats and 100 images 
of dogs, yielding a result of (100*0.95+900*0.85)⁄1000=86 % 
see Table 1

Tester Dog Cat accuracy
Tester 1 900 100 94%

Tester 2 100 900 86%

Tab. 1: Gedankenexperiment

What is the correct response?

In [8], we utilize a straightforward ML-based model to 
illustrate the extent to which the test outcomes for the 
system’s accuracy are contingent upon the distribution of 
the test data. In particular, these results indicate that the 
conventional combinatorial testing approach is no longer 
a viable method for evaluating the accuracy of ML-based 
systems.

From a mathematical perspective, the precision and 
accuracy of ML-based systems and other conventional 
statistical quality indicators are ultimately determined 
by the outcomes of measurements and test runs. 
The validity and significance of such an approach is 
contingent upon the specific set of samples under 
consideration. Furthermore, the fundamental tenets of 
the central limit theorem, which pervades nearly all such 
methodologies, dictate that samples must be drawn from 
the base distribution. When deterministic algorithms are 
used, which do not adhere to the base distribution, it is 
impossible to verify the validity of any statistical quality 
criteria e.g., the precision and accuracy of a ML-based 
system. Without knowledge of the distribution, a mean 
cannot be determined without sampling.

In conclusion, these observations imply that in order 
to measure reliable quality indicators for ML-based 
systems, it is necessary to have direct access to the 
base distribution. It is only through the utilization of a 
probability model for the input data that a systematic 
and reasonable approach to sampling test data can 
be achieved. The concept of a probabilistically extended 
ontology enables us to address this issue.

3 PEON, THE CONCEPT OF PROBABILISTICALLY 
EXTENDED ONTOLOGIES

Systematic software testing is a methodical, tool-
supported, and well-proven procedure in which the 
input space of the test object is adequately covered by 
tests. This is achieved through the use of established 
techniques, such as the category partition method, limit 
value analysis, and the classification tree method, see 
[7]. This method is a black box approach that permits 
quality assessment to be conducted independently of 
the development process.
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In the case of ML-based systems, their target domain, 
the operational design domain (ODD), may include for 
example, images of people, road traffic, train routes, video 
sequences, and audio recordings. . . The environment is 
too complex to be represented by a tree-like structure. 
Ontologies are becoming an increasingly popular 
means of formalizing the description of highly complex 
environments within the context of an ML-based system, 
see [1,6,11,9,5,3,4,12,17,13]. They comprise the entities 
with their properties and logical dependencies as they 
can occur in the target environments. Nevertheless, to 
date, ontologies have been employed primarily for the 
purpose of identifying edge cases. We will use ontologies 
more pervasive in a wider range of applications.

Let us consider a given ontology with a set of defined 
entities, for instance person. These entities may exhibit 
a variety of characteristics, including size, thickness, 
age, etc. In some images, a person may be depicted. The 
person may be of varying sizes, with varying degrees 
of thickness or thinness, and may belong to any age 
group. Images can be grouped accordingly. This results 
in a partitioning of the ODD as specified by the ontology. 
An example of which, is pictured on the left in figure 1. 
Such structures serve as a replacement for category or 
classification trees.

Nevertheless, the data set is insufficient for a statistical 
evaluation, which is a prerequisite for the assessment of 
ML-based systems. As demonstrated by the experiments 
presented in Chapter 2, or for further details [8], it is 
crucial to define the probability of occurrence for the 
various partitions. In the case of the simple dog/cat 
example 2, it is necessary to specify the distribution of 
images to be classified between these two categories. 
In Germany, there are approximately 12 million dogs and 
16 million cats. Consequently, the correct answer for 
Germany would be approximately 92.6 %.

As previously stated, an ontology defines a partition of 
the ODD. This must now be augmented with occurrence 
probabilities for each partition, as illustrated in Figure 1 .

Fig. 1: The partitioning is conducted in accordance with an established ontology, with the occurrence probabilities represented accordingly.

Definition 1 A probabilistically extended ontology is 
defined as an ontology augmented with a probability 
distribution on the related partition reflecting the 
occurrence of the partition.

To rephrase, a probabilistically extended ontology 
provides us with a probabilistic model of the ODD. 
Depending on the partition the failure rate of the test 
object will be different. A large person in yellow clothing 
will be easier to see than a small person in camouflage.

uniformity hypothesis for a PEON: In light of this 
concept, a criterion is proposed for the entities and 
refined properties that should be modelled in the 
ontology. It is modelled on the uniformity hypothesis of 
the classification tree analysis, [7] and depends on the 
test object. The uniformity hypothesis for a PEON states 
that the refinement of a (ontology) partition should 
continue until the failure rate of the ML-based system 
on exemplars of the partition is likely to be equal. This 
hypothesis allows us to derive a statistical model of test 
performance from the PEON, thereby facilitating a more 
precise evaluation of the test, see [15,16].

sampling, sample size and test completion criteria: If 
we want to achieve an accuracy of specified significance 
by testing, the probability model helps us to sample 
an appropriate set of abstract test cases. We can also 
estimate the size of the sample set needed for this by 
using the central limit theorem.

test evaluation: When the sampled test cases are 
executed on the test object, we can compute the 
various statistics for their results against the probability 
model defined by the probabilistically extended ontology.  
 
In this way we can answer the questions 1 in chapter 1. At 
first sight, modelling such a distribution of probabilities 
of occurrence seems impossible. However, we have 
developed a number of techniques, language concepts 
and algorithms to achieve this goal. In the KI-LOK project, 
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Fig. 2: Modelling various weather conditions in a 
probabilistically extended ontology

probabilistically extended ontologies have been created 
and tested to describe train routes with stations, forests 
and signals, and under different weather conditions.

4 HOW TO MODEL A PEON?

Look at the different weather conditions in a scene. They 
depend on the season, the time of day, it could be cold 
or hot, stormy or calm. In a simple model we use the 
entities as shown in Figure 2. As attributes we use broad 
categories like very cold, cold,. . . , hot.

If we look at the websites of meteorological institutes, we 
can see how many hours per year we have sunny or rainy 
weather. We can also see that the strength of the wind 
is approximately Weibull distributed. . . . In mathematical 
terms we get the prior distributions for the entities like 
wind, temperature and season, see Figure 2.

The probability of their combination is more 
difficult to determine. It is essential to consider the 
interdependencies between the various instances. The 
probability of snowfall is contingent upon the prevailing 
temperature, with the greatest probability occurring 
during the winter months. Furthermore, the probability 
of storms is higher in the spring and autumn than in 
summer. The probability distribution for wind strength in 
a given season is then given by a distribution, denoted by 
pseason×wind, on the product space. It is imperative that 
they reach a consensus regarding the previously defined 
prior distributions. Integrating out one variable results in 
the generation of a probability distribution over the other, 
that is to say,

Such distributions are referred to as marginal distributions 
of 𝑝season×wind, see [14].

For the time being, the prior distributions are designated 
as 𝑝temperature, 𝑝wind, and 𝑝season. The constraint states that the 
marginal distributions of 𝑝season×wind must agree with the 
prior distributions defined,

and similar for season. A distribution on the product 
space with marginals given by some prior distributions 
is referred to as a coupling of the prior distributions, see 
[14]. The space of all possible couplings to a given pair of 
prior distributions is well-defined and can be studied in 
detail. By applying Bayes’ theorem to a coupling 𝑝season×wind

between the prior distributions 𝑝wind, 𝑝season we can derive 
the conditional expectation.

given season = fall, the probability for strong wind is =

This links our task of defining proper probabilities for 
combinations with finding couplings where the associated 
conditional expectations reflect the dependencies for 
various instances i.e., it is unlikely to snow in summer. 
 
We have developed several algorithms and techniques to 
model such interdependencies using couplings.

5 RAILWAY EXAMPLE

The objective of the KI-LOK research project was 
to develop methodologies and techniques for the 
validation and verification of an object detection system 
in the railroad domain. To this end, we designed a 
probabilistically extended ontology (PEON) for selected 
components of an ODD. This chapter provides further 
details on this topic.

5.1 RAILROAD TRACK

In the railway domain, the operational design domain 
(ODD) is centred on the track. A track can be 
conceptualised as a specific combination of components, 
each with a defined length and curvature that directs the 
train to move left or right. It is not the specific details that 
are of consequence here; rather, it is the fundamental 
observation that a track is constituted of a finite number 
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of sections, which can be delineated by their 
length, curvature and orientation, see Figure 
3. Again it is reasonable to assume that we get 
statistical data for the distribution of curvatures 
and lengths from some railway institute. Given 
the symmetry inherent in riding back and forth, 
we set the orientation to be uniformly distributed. 
This defines the marginal distributions for track 
parts.

There are various categories of railway lines, 
including urban, regional and highspeed 
lines. These are typically situated in different 
environments and their distribution is presumed 
to be well-known.

High-speed lines usually have very long sections 
with only very slight curves, whereas urban lines 
have relatively short sections with sharper curves. We 
model this dependency as follows. The different types 
have a natural order urban, regional,... highspeed, the 
curvatures also highly curved,... almost straight. We 
index the different possibilities and can then describe the 
dependancy informally: The higher the index of the type, 
the more likely we expect a higher index of curvature.

High-speed lines typically comprise lengthy sections with 
minimal curvature, whereas urban lines are characterised 
by comparatively shorter sections with sharper curves. 
The dependency in question is modelled as follows: the 
various categories exhibit a natural order, progressing 
from urban to regional and then to high-speed. The 
curvatures also vary considerably, from highly curved to 
almost straight. The different possibilities are indexed, 
allowing for an informal description of the dependency: 
the higher the index of the category, the more probable it 
is that the index of curvature will be higher. We 
model this dependancy linearly, see Figure 3.

In this way we obtain a PEON description of the 
various types of railway tracks and subsequently 
sample abstract track descriptions. In the 
second step, the aforementioned descriptions 
can be readily sampled for concrete data 
regarding length, curvature, and alignment, 
thereby enabling the sampling of specific 
railway tracks.

5.2 SIGNALS ALONG THE TRACK

A case study of the KI-LOK project dealt with 
the recognition of signals on the railroad line. 
There are different types such as dwarf signal, Andreas 
cross etc., closely related to them different statuses 

Fig. 3: Section of a probabilistically extended ontology 
for railway tracks

Fig. 4: PEON for trackside signals

of the signals and their localization to the tracks or to 
the ego train, see Figure 4. COUNT = [1,4] at the node 
signals describes that between one and four signals are 
to be sampled. Depending on the route category, there 
may be more or fewer signals, but this is not modeled in 
this example. The localisation needs to be specified for 
many objects along the route, not just for signals. Instead 
of noting this required property separately under each 
signal, we can bundle these properties into separate 
subtrees, as is common in ontologies, see Figure 4. In 
general, the position of the signals along the track is 
constantly changing due to the movement of the train, so 
their longitudinal spacing can be assumed to be uniformly 
distributed.
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Fig. 5: PEON generated conceptional picture of a railway 
track

Fig. 6: Concept of the POC toolchain and demonstrator

Again we can sample from this abstract settings for signals 
and in a second step concrete data for appearance, state 
and localisation of signals, see Fig. 5.

5.3 TRANSFER TO OTHER DOMAINS

As we have seen in the previous sections, a PEON is 
built according to the ODDs context and extends the 
concept of ontologies. There are various methodologies 
for designing a PEON. Our preferred approach to general 
scenarios is a top-down methodology, whereby the 
design process begins with a comprehensive overview of 
the system, encompassing the environment, track, and 
structures, and then proceeds to the finer details, such 
as the signals, their location and types.

It is similarly important to consider the reliability of the 
system in special conditions, for example, in inclement 
weather. In such circumstances, the system should 
continue to perform satisfactorily, even in conditions of 
heavy fog. In order to address this issue, the development 
of appropriate PEONs can be undertaken to describe 
these conditions, which are also relevant in other areas, 
see figure 2.

The concepts of ontologies and PEONs entail that they 
can be iteratively refined and supplemented. Therefore 
this general approach can be directly transferred to 
other domains. When the automotive domain is targeted, 
the environment and structures would be similar, while 
roads take the part of railroad tracks and the signals in 
part map to different assets (stop signals to stop signs) 
or are of distinctly different types (switch signals have 
no equivalent in the automotive domain, where as no 
stopping signs have no equivalent in the train domain). 
But one should take care. While some entities and their 
properties in a PEON may be identical across the train and 
automotive domains, they may also be subject to domain-
specific prior distributions for re-evaluation. Failure to do 
so could result in statistical representativeness being 
skewed, thereby compromising the desired results.

The ability to transfer parts of a PEON between domains 
has implications for the scalability of this approach. 

The construction of a new ontology for each domain is 
unnecessary, as prior distributions can be adapted in 
parts of the ontology, thereby facilitating transferability 
and scalability.

6 PEON, A BASIC BUILDING BLOCK OF A PROOF-OF-
CONCEPT (POC) IMPLEMENTATION

Following the analysis of [10] and their proposed safety 
evaluation process, which is another result of the KI-
LOK project, we want to propose an implementation of 
the process in a toolchain (figure 6) to accelerate the 
acceptance of the approach in the industry. We are also 
focusing on a black box test to enable adoption without 
the need for a specialised test setup. Together with 
our project partners, we developed a proof-of-concept 
implementation that can be used to validate an object 
detection system for railways. The basis and statistical 
reference point is a probabilistically extended ontology 
developed for several use cases. From this we generate 
abstract test cases, i.e. specified partitions from which 
the input data should be selected. The abstract data 
are then sampled to concrete descriptions, i.e. what 
detailed path the track should follow, where signals 
should be placed, etc., as sketched in Chap. 5.1,5.2. 
We get what is called a conceptual picture of the test, 
a 2-dimensional description of the scene. The result is 
then further enhanced by the addition of concrete assets 
and is expanded into a complete 3-dimensional visual 
simulation, see Fig. 6.

The tool chain allows for the automatic determination of 
the quality of an object recognition system. The requisite 
number of test cases is calculated based on the quality 
and significance required for a scene, using a statistical 
model derived from the PEON. A corresponding number 
of abstract test cases are then sampled and enriched 
to create complete visual simulations. This data is fed 
into the test object, the object recognition system, and 
the system’s ability to recognise the various objects is 
measured. The statistical evaluation of these results 
then provides transparent, objective and comprehensible 
criteria for the acceptance or rejection of the test object.
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7 CONCLUSION AND FUTURE WORK

It is imperative that ML-based systems be evaluated 
statistically, given that they are basedb on statistical 
models. This in turn requires the development of new 
testing concepts. The novel concept of probabilistically 
extended ontologies (PEON) facilitates a statistical 
characterization of the target environment, the ODD, 
thereby serving as a reference for statistical test 
outcomes. In preliminary trials, we demonstrated that 
this methodology is reliable, whereby if developers and 
testers have followed the prescribed procedures, they 
will produce comparable assessments of the system’s 
quality, see [8]. In this paper we have shown that, in 
general, combinatorial testing is not able to reproduce 
the quality of the systems claimed by the developers. 
To date, preliminary PEONs have been developed for 
railroad lines with forests, platforms, various track 
signals, and weather conditions (rain, fog, etc.). However, 
further modeling, such as that of road traffic and people, 
remains to be done. With these additions, the potential for 
further development and expansion of suitable modeling 
concepts is significant.
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Abstract. With rising energy costs and a growing 
emphasis on sustainable and efficient production, 
predicting the energy consumption of CNC machines 
has become increasingly important. Accurate predictions 
can lead to significant energy savings, better planning, 
more informed decision-making, and alignment with 
smart manufacturing and Industry 4.0 initiatives. 
Extensive research has been conducted in this area, 
utilizing both physical and analytical models, as well 
as expert knowledge from experiments. More recently, 
machine learning models have also been employed 
using a wide range of input features. In this paper, we 
examine the energy consumption of CNC machines by 
analyzing various features explored in different studies. 
We propose a method that ranks these features based 
on their predictive power, then groups the rankings to 
highlight a small subset of the most predictive features. 
Furthermore, we assess the stability of the predictive 
power of these features over time, allowing us to not only 
rank them by their predictive strength but also evaluate 
their long-term stability. Our findings indicate that only 
a few features are highly predictive, and their predictive 
power remains consistent over time.

Keywords. Time series prediction, CNC machine, 
feature relevance.

1 INTRODUCTION

Computer numerical control (CNC) machining is 
crucial for part manufacturing, and is extensively 
used across industries to produce components and 
finished products [1]. CNC-controlled tools, such as 
three-axis milling machines with the spindle (SP), are 
common but energy-intensive [2]. Rising energy costs 
and climate concerns have led to increased efforts to 
optimize energy consumption in manufacturing [3], 
particularly in machine tools [4]. Nearly one-third of the 
world’s energy consumption and 36% of CO2 emissions 
are attributed to the manufacturing sector [5, 6], 
highlighting the need for energy-efficient production.  
 
Manufacturers are under pressure to reduce energy use 
and CO2 emissions due to environmental regulations and 
consumer demand for sustainable practices [7]. Efforts 
to minimize energy consumption in CNC machining not 
only reduce costs but also improve environmental impact, 
making energy-efficient CNC tools essential for meeting 
environmental goals. However, achieving energy savings 
remains a challenge [8].

Predicting energy consumption in CNC machining is 
critical for improving efficiency [9]. Companies are 
interested in simplifying the prediction process [10], 
and machine learning models are increasingly used to 
forecast energy use. However, different features are 
used as inputs in the models across various studies. 
Understanding the significance of these features is 
crucial for enhancing model transparency, explainability, 
and improving prediction accuracy.

In our paper, we present a method for ranking features 
based on their predictive power, grouping this ranking into 
categories according to their importance. The approach 
allows for the prioritization of features, helping to decide 
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which should be emphasized or deprioritized in the future. 
Additionally, we quantify the stability of these features, 
examining whether they maintain their categories over 
time or shift between categories. Therefore, the research 
question addressed in our paper is:

How can we rank features according to their predictive 
power in importance categories, and how can we 
determine the stability of these categories over time?

The structure of the paper is organized as follows: 
Section 2 presents a comprehensive review of prior 
research on machine energy consumption. Section 3 
outlines the methodology, detailing how features are 
ranked into importance categories and how their stability 
is determined. In Section 4, the dataset used in this 
study is introduced, followed by a description of the 
experimental setup, including the implementation and 
evaluation metrics. The results are presented in Section 
5, along with a discussion of the findings. Finally, Section 
6 provides the conclusion and offers recommendations 
for future research.

2 RELATED WORK

The industrial sector is increasingly focusing on the 
development of sustainable products with minimal 
environmental impact [11]. A key aspect of this is reducing 
the energy consumption of machine tools, which is 
critical for improving the sustainability of manufacturing 
processes [5]. The energy consumption of these 
machines can be categorized into two main components: 
primary units, responsible for kinematic movements 
like axis control and the main spindle operation, and 
secondary units, which include auxiliary functions such 
as coolant supply and hydraulic systems. Several studies 
have aimed to optimize machining parameters to reduce 
energy consumption [12]. However, modeling energy 
usage remains challenging due to uncontrollable factors 
such as random errors and missing data in observed 
samples [9]. The complexity of these variables makes 
precise energy prediction difficult. This is particularly true 
when the focus is on understanding the process itself 
rather than on the auxiliary components of the machine, 
as modeling the process is inherently more complex and 
challenging. In recent years, machine learning methods 
have been increasingly employed to predict energy 
consumption. A major advantage of machine learning is 
its ability to process large datasets and uncover deeper 
insights into machining processes. These techniques 
allow for the extraction of valuable patterns and 
correlations that were previously difficult to detect. One 
of the pioneering efforts in this field was by Dietmair et 
al., who proposed a model for predicting and optimizing 

energy efficiency in machining operations [13]. Similarly, 
Cao et al. et al. developed a model that categorized CNC 
code, enabling predictions of energy consumption for 
each grouped state [14]. Quintana et al. used a neural 
network model with seven input parameters, including 
feed rate, to enhance prediction accuracy [15]. Kante 
et al. further refined energy prediction using a neural 
network model with variable input parameters, improving 
model performance [16]. Borgia et al. applied machine 
learning techniques using features such as axis speed, 
acceleration, spindle speed, and torque to predict energy 
consumption [17]. Duc and Trinh developed an approach 
that incorporated tool wear as a factor in energy 
consumption prediction [18]. Ströbel et al. created a 
machine learning model that used CNC-derived features 
like speed and acceleration for each axis to improve 
energy prediction accuracy [19]. Camposeco-Negrete et 
al. optimized energy consumption using an ANOVA model 
[20], while Liu et al. studied how process parameters 
influenced both tool wear and the energy consumption 
of machine tools. [21]. Additionally, Draganescu et al. 
[22] aimed to correlate energy consumption at the tool 
tip with the efficiency of the main spindle drive under 
varying cutting conditions. Kolar et al. proposed a model 
for predicting CNC machining energy consumption, 
considering factors like material removal rate, spindle 
speed, coolant pumps, tool changers, and fan motors [23]. 
 
As highlighted in the literature, energy consumption 
predictions in manufacturing tools are often based 
on analytical or experimental approaches. These 
approaches vary significantly and are often derived 
from simulations, which can lack precision. A thorough 
evaluation of the importance of these features and their 
influence on prediction accuracy is often absent. In our 
earlier work [24] we employed a long short-term memory 
(LSTM) model to rank features based on their predictive 
power. However, an analysis of the categorisation of 
these features, as well as their stability in improving 
energy consumption predictions, is still lacking. In 
summary, while progress has been made in optimizing 
energy consumption in machining processes, a deeper 
understanding of how specific features contribute to the 
model and their relationship to energy consumption is 
still needed to enhance prediction accuracy.

3 METHODOLOGY

In our study, we do not consider factors that are more 
straightforward to model, such as auxiliary components 
like cooling conditions, due to the extensive research 
already conducted in those areas. Instead, we focus 
on the energy consumption of the spindle, which 
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constitutes the largest portion of the machine’s total 
energy consumption, represents the process-dependent 
aspect of the machine, and poses greater challenges for 
prediction. This is the primary target of our work. Due 
to the strong correlation between the higher-resolution 
current signal and the power signal [19, 24], it is possible 
to establish predictable relationships between features 
and energy consumption. Furthermore, the accessibility 
of the current signal in brownfield machines supports 
its selection as the target 𝐲 in our paper. Following the 
approach of our earlier work [24], this study develops a 
model 𝑀 for each feature f to assess its influence on the 
prediction. An LSTM is also applied here to predict the 
spindle’s current signal as accurately as possible. The 
LSTM is a powerful recurrent neural network that detects 
complex patterns in time series and captures long-term 
dependencies [25]. It outperforms traditional models like 
ARIMA [26], is robust against noisy data, and effectively 
handles issues such as exploding or vanishing gradients 
[27]. At each time step t, the performance of each Model 
𝑀 is quantified using an evaluation metric E. Based on 
this, features are ranked at each time point, with the 
best feature receiving a rank of 1, and the worst feature 
receiving a rank equal to the total number of features 
m. Individual feature rankings can change rapidly with 
slight shifts in prediction values, whereas features within 
ranking categories are less likely to fluctuate.

Unlike in our earlier work [24], this study groups these 
ranks into „bins“ (ranking categories 𝐑 ) to categorize 
the importance of the features. The advantage of 
grouping rankings into bins is that it allows features to be 
categorized based on their importance to the prediction. 
Additionally, it provides a more reliable way to quantify the 
stability of feature predictions. The number of bins used 
depends on the number of features 𝑚 and a parameter 𝑘. 
The number of bins is calculated as follows:

(1)

(2)

where 𝑘 ≤ 𝑚. The larger the value of the parameter k, 
the more the m features are grouped into the same bin. 
The features are then ordered by importance. With 𝑘 = 
𝑚, each feature stands alone, with no grouping into bins 
at all. As 𝑘 decreases, the number of bins increases. The 
ranks are transformed into bins in a linear fashion, that 
can be described as:

This function ensures that each feature ranking is 
assigned a distinct bin. For instance, if there are 4 
features and 2 bins, the first two features are assigned 

to the first bin, and the last two features are assigned 
to the second bin. This allocation follows the calculation  
bin(1) = 1 ∗ 2/4 = 0.5, which rounds up to bin 1, and so on.

This approach categorizes feature importance, with 
particular attention given to features in the top bins. 
Features considered less important are grouped into 
the last bin. Each 𝐟 is assigned a unique rank based on 
its performance at each time point 𝘵, ensuring no two 
features share the same rank. However, if two features 
have identical error values at a specific time point 𝘵, they 
are assigned the average of their respective ranks. It is 
recommended to use a natural number for the number 
of bins. This can be accomplished by determining the 
parameter 𝑘.

After transforming ranks into bins 𝐑 ∈ ℕ𝑚,𝘵 for each feature 
𝐟 at each time point 𝘵 with the ComputeBins function, for 
every f the matrix B is divided into partitioned windows 𝑛 
over the entire time 𝘵 to obtain a unique bin assignment for 
each 𝐟 and later to analyze the stability of the predictive 
power of each 𝐟 . Within each window (with window size 
𝑙 ∈ {1, ..., 𝘵} ), the most frequent bin for each f is identified, 
and this bin is considered the „winner“ for that feature 
in the respective window. If two or more bins occur with 
equal frequency, the average of these bins is used as the 
bin winner. A 𝐟 may retain the same bin across different 
windows. If fewer data points are available in the final 
window than the window size, we still consider the most 
frequent bin. We denote the result as the matrix 𝐁 ∈ ℕm,n.

To transform all bins over time into one final bin, the most 
frequent bin across all windows is identified for each 
feature, assigning it to one of the predefined categories. 
If multiple bins are equally frequent, the average these 
bins is taken as the final bin. A pseudocode for the 
method is supplied in Algorithm 1.
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Based on these bins and their frequency in the windows 
𝑛, the stability of each feature’s predictiveness can be 
determined. To quantify this, for each feature, starting 
with the first window, the bin in which the feature resides 
is compared to subsequent windows.

A feature’s stability is measured by how often its bin 
changes across all windows. A feature is more stable 
if it changes categories less frequently, and it is 
considered most stable if it remains in the same bin for 
all windows. For example, a feature is stably predictive 
if it consistently stays in bin 1 across all windows, and 
stably non-predictive if it consistently remains in the last 
bin across all windows. Stability can be expressed as a 
percentage of windows in which a feature stays in the 
same bin. A feature is considered relatively stable if it 
stays in the same bin for a high percentage of windows 
(e.g., 80% or more).

In contrast, predictiveness refers to the ability of a 
feature to be useful for making predictions. A feature is 
considered stably predictive if it predominantly resides 
in bin 1 (indicating high predictive power), while a 
feature is stably nonpredictive if it is predominantly in 
the last bin (indicating low or no predictive power). The 
predictiveness of a feature can also be assessed by the 
frequency of its occurrence in higher bins (e.g., bin 1 or 
bin 2).

Thus, a feature’s stability and predictiveness are not 
binary, but rather represent a spectrum. The more 
frequently a feature remains in the same bin or in higher 
bins, the more stable or predictive it is considered.

By analyzing the bins and their changes or repetitions 
across windows, one can gain insights into when a feature 
is predictive within the time series. The more bins and 
windows used, the more detailed the insights, though the 
computational cost increases as well.

The advantage of the method lies in its model 
independence, meaning it is not tailored to any specific 
model and can be universally applied. Furthermore, the 
evaluation metric for binning and stability can be adapted 
to the specific requirements of the task. Additionally, this 
method does not require data preprocessing or expert 
knowledge, as it is purely data-driven.

4 MATERIALS AND EXPERIMENTAL SETUP

This section offers an overview of the datasets used to 
apply the method outlined in our paper. It also details 
the parameters for the method and the machine learning 
models. Lastly, the evaluation metrics used to measure 

the effectiveness of the proposed method are presented.

4.1 DATASETS

The datasets were collected using two DMG machines: a 
CMX 600 V and a retrofitted DMC 60H milling machine, 
both equipped with a Siemens Industrial Edge system 
operating at a sampling rate of 500 Hz. The experiments 
involved machining aluminum (ALU) and steel (S), 
with varying feed rates and spindle speeds to create 
comprehensive datasets. The time series data for 
these processes were published in references [28] and 
[29]. The CMX is a newly manufactured machine, while 
the DMC is an older retrofitted model. The datasets 
were chosen for their high frequency and axis-specific 
data, aligning with the objective of this work to predict 
and understand spindle consumption. The machines 
captured a total of 52 features across the X, Y, Z axes and 
spindle parameters (SP), including actual axis position, 
commanded axis position, commanded speed, contour 
deviation, control difference, feed rate, load, torque, 
and torque feed forward. Additionally, the spindle drive 
current value is used as the target output in this study. 
For more information on these features, please refer to 
[30]. Then datasets are labeled as CMX-ALU, CMX-S, 
DMC-ALU, and DMC-S, indicating the machine and 
material used.

4.2 IMPLEMENTATION

The parameters 𝑘, representing the number of bins, 
and 𝑙, indicating the size of the partitioned windows, 
are determined based on the specific use case and the 
characteristics of the existing dataset. In this study, 
we focus on the most predictive features, assigning all 
rankings up to 10 to the first bin, while rankings below 
10, totaling 42, are grouped into the second bin. The 
parameter 𝑙 is set to 500 to identify the most frequent bins 
within this window and to assess the stability of these 
bins across other windows. The LSTM model architecture 
comprises three layers with 64, 32, and 25 neurons, 
respectively. It employs a dropout rate of 0.5, uses the 
ReLU activation function, and is optimized with the 
Adam optimizer (learning rate of 0.01). The loss function 
utilized is the mean squared error (MSE). To facilitate the 
use of raw data from different machines, the data was 
normalized using a standard scaler. The implementation 
was carried out in Python, utilizing libraries such as, 
scikit-learn, and TensorFlow.

4.3 EVALUATION METRIC

The squared error (SE) metric is utilized to assess the 
performance of the applied models. It is computed as the 
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square root of the average of the squared differences 
between the predicted values ŷ and the actual values 𝐲,. 
This is mathematically defined as follows [31]:

(3)

It is important to note that larger errors have a 
disproportionately higher impact on the SE value 
compared to smaller errors, due to the nature of squaring 
the differences. The optimal SE value is 0, with the worst-
case reaching +∞.

5 RESULT AND DISCUSSION

Our paper presents the features of the four datasets 
to which the applied method was used, categorized 
according to their bin assignment. Figure 1 illustrates the 
stability of all features across all windows. The length of 
the bars represents the frequency of bin occurrences 
for each feature, while the color indicates the final bin 
assignment. The most frequent value within each window 
and across all windows was chosen as the final bin. This 
result pertains to dataset CMX-ALU, with comparable 
outcomes observed across the other datasets as 
well. Table 1 highlights all features that consistently 
appeared in the first bin across all four datasets. In 
contrast to Table 1, Table 2 displays five of the features 
that consistently appeared in the last bin across all four 
datasets after the method applied in this paper was used.  

Fig. 1: The bin assignment for each feature and its stability 
across all windows. The length of the bars represents 
the frequency of occurrence of the bin values for each 
feature, while the color indicates the final bin assignment. 
This result relates to the dataset CMX-ALU.

Tab. 1: The final bin assignment of the best features, 
which are consistent across all four datasets where the 
method is applied, shows that the top binning occurred 
most frequently across all windows.

Tab. 2: Five of the least predictive features and their final 
bin assignment are based on the most frequent value 
within the window. This applies to all four datasets after 
the method was applied.

It was found that certain features, such as spindle load, 
spindle torque, X and Y axis feed rate, spindle commanded 
speed, and spindle torque feed forward, x, y, and z axis 
load, consistently ranked among the best across all four 
datasets and remained stable, demonstrating strong 
predictive power.

Features bin Assignment
Torque of spindle 1

Commanded speed of spindle 1

Load of spindle 1

Feed rate of x-axis 1

Feed rate of y-axis 1

Torque feed forward of spindle 1

Features bin Assignment
Positions of encoder 1 2

Postion of encoder 2 2

Actuall and commanded postion of the axis 2

Control difference 1 2

Control difference 2 2

In contrast, features like the positions of encoder 1 
and 2, actual and target axis positions, and control 
differences 1 and 2 were consistently among the 
worst, maintaining their status as stable but non-
predictive. Other features, such as torque of x, y and 
z-axis, x, y, and z commanded speed, were unstable, 
with their predictive power fluctuating over time.  
 
These results were partly expected, as energy 
consumption is influenced by the speed of the axes 
required to remove material during machining. Additionally, 
spindle load and torque are critical factors, given their 
correlation with the energy required for material removal. 
Conversely, positional data is not a reliable indicator of 
energy consumption, as it provides limited insight into 
the machine’s overall energy use.

The findings highlight the importance of assessing both 
the predictive power of features and their stability over 
time. Further research is needed to explore the interaction
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between features and their collective predictive power 
over time. Incorporating physical knowledge into data 
collection, feature selection, and dataset composition 
are important to provide enhanced insights. Additionally, 
integrating analytical knowledge may provide deeper 
understanding. Expanding this analysis to a broader 
range of datasets, materials, machines, and features will 
be crucial to further improving our understanding of the 
role features play in predicting energy consumption.

6 CONCLUSION

In our work, we developed a method to categorize 
features based on their importance in predicting 
energy consumption. Additionally, the stability of these 
categories was quantified to determine if the features 
consistently remained in the same bins over time. 
The raw machine signal data was fed directly into the 
machine learning model without pre-processing, relying 
on technical knowledge of the processes. The method 
was applied to four datasets from two machines using 
two different materials, enabling a comprehensive 
analysis. It offers deeper insights into the relationship 
between features and energy consumption, helping 
to understand how features contribute to predictions 
over time. As a result, certain features can be identified 
for closer scrutiny in the future, while others may be 
omitted, enhancing transparency and revealing process 
interdependencies. These transparent results allow for 
accurate energy consumption predictions, promoting 
sustainable production and cost reduction.

Building on the work of [19] and our earlier work [24], 
future research will focus on gathering more extensive 
datasets to enhance our understanding of machine tool 
energy consumption. One key challenge is determining 
the importance of features over time. Although our 
current method is model-agnostic, it does not consider 
interactions between features. In future work, we plan to 
extend this approach by incorporating the interactions 
between features, as these relationships may provide 
valuable insights into the predictive power and stability 
of the features. Additionally, the model relies solely on 
raw signal data, without incorporating relevant domain 
knowledge. To overcome these limitations, we intend 
to develop more sophisticated techniques for assessing 
feature importance, integrate process-specific expertise 
into the model, and further explore the stability of feature 
importance over time to achieve a more comprehensive 
understanding.

ACKNOWLEDGMENT

The IGF project 22849 BG of the research association 
Gesellschaft zur Förderung angewandter Informatik e.V. 
(GFaI) was supported via the AiF in a program to promote 
the Industrial Community Research and Development 
(IGF) by the Federal Ministry for Economic Affairs and 
Climate Action on the basis of a resolution of the German 
Bundestag.

REFERENCES

[1] M. Soori, B. Arezoo, and R. Dastres, “Machine learning and artificial 
intelligence in CNC machine tools, a review,” Sustainable Manufacturing 
and Service Economics, vol. 2, 2023, 100009.

[2] W. Liu, “Content architecture and future trends of energy efficiency 
research on machining systems,” Journal of Mechanical Engineering, vol. 
49, no. 19, pp. 87–94, 2013.

[3] T. Gutowski, J. Dahmus, and A. Thiriez, “Electrical energy requirements 
for manufacturing processes,” in 13th CIRP international conference on 
life cycle engineering, vol. 31. Leuven, Belgium, 2006, pp. 623–638.

[4] W. H. Choi, J. Kim, and J. Y. Lee, “Development of fault diagnosis 
models based on predicting energy consumption of a machine tool 
spindle,” Procedia Manufacturing, vol. 51, pp. 353–358, 2020.

[5] P. S. Bilga, S. Singh, and R. Kumar, “Optimization of energy consumption 
response parameters for turning operation using Taguchi method,” 
Journal of Cleaner Production, vol. 137, pp. 1406–1417, 2016.

[6] E. Efficiency, “Tracking industrial energy efficiency and CO2 
emissions,” International Energy Agency, vol. 34, no. 2, pp. 1–12, 2007.

[7] M. Bornschlegl, S. Kreitlein, M. Bregulla, and J. Franke, “A method 
for forecasting the running costs of manufacturing technologies in 
automotive production during the early planning phase,” Procedia CIRP, 
vol. 26, pp. 412–417, 2015.

[8] W. Cai, F. Liu, O. Dinolov, J. Xie, P. Liu, and J. Tuo, “Energy benchmarking 
rules in machining systems,” Energy, vol. 142, pp. 258–263, 2018.

[9] J. Pan, C. Li, Y. Tang, W. Li, and X. Li, “Energy consumption prediction 
of a CNC machining process with incomplete data,” IEEE/CAA Journal of 
Automatica Sinica, vol. 8, no. 5, pp. 987–1000, 2021.

[10] R. Ströbel, A. Bott, L. Hutt, S. Groß, and J. Fleischer, “Untersuchung des 
Umgangs produzierender Unternehmen mit Energieverbrauchsmonitoring 
und -vorhersage,” Zeitschrift für wirtschaftlichen Fabrikbetrieb, vol. 119, 
no. 1-2, pp.80–84, 2024. [Online]. Available: https://doi.org/10.1515/zwf-
2024-1009

[11] S. A. Bagaber and A. R. Yusoff, “Multi-objective optimization of cutting 
parameters to minimize power consumption in dry turning of stainless 
steel 316,” Journal of Cleaner Production, vol. 157, pp. 30–46, 2017.

[12] Z. M. Bi and L. Wang, “Energy modeling of machine tools for 
optimization of machine setups,” IEEE Transactions on Automation 
Science and Engineering, vol. 9, no. 3, pp. 607–613, 2012.

Papers | AI4EA



  95GFaI-TAGUNGSBAND 2024

[13] A. Dietmair and A. Verl, “Energy consumption modeling and 
optimization for production machines,” in 2008 IEEE International 
Conference on Sustainable Energy Technologies. IEEE, 2008, pp. 574–
579.

[14] J. Cao, X. Xia, L. Wang, Z. Zhang, and X. Liu, “A novel CNC milling 
energy consumption prediction method based on program parsing and 
parallel neural network,” Sustainability, vol. 13, no. 24, p. 13918, 2021.

[15] G. Quintana, J. Ciurana, and J. Ribatallada, “Modelling power 
consumption in ball-end milling operations,” Materials and Manufacturing 
Processes, vol. 26, no. 5, pp. 746–756, 2011.

[16] G. Kant and K. S. Sangwan, “Predictive modelling for energy 
consumption in machining using artificial neural network,” Procedia CIRP, 
vol. 37, pp. 205–210, 2015.

[17] S. Borgia, S. Pellegrinelli, G. Bianchi, and M. Leonesio, “A reduced 
model for energy consumption analysis in milling,” Procedia CIRP, vol. 17, 
pp. 529–534, 2014.

[18] L. A. Duc and N. D. Trinh, “A new study for prediction and optimisation 
of energy consumption during high-speed milling,” International Journal 
of Computer Integrated Manufacturing, vol. 35, no. 12, pp. 1352–1377, 
2022.

[19] R. Ströbel, Y. Probst, S. Deucker, and J. Fleischer, “Time series 
prediction for energy consumption of computer numerical control axes 
using hybrid machine learning models,” Machines, vol. 11, no. 11, p. 1015, 
2023.

[20] C. Camposeco-Negrete, J. de Dios Calderón Nájera, and J. C. 
Miranda-Valenzuela, “Optimization of cutting parameters to minimize 
energy consumption during turning of AISI 1018 steel at constant material 
removal rate using robust design,” The International Journal of Advanced 
Manufacturing Technology, vol. 83, no. 5, pp. 1341–1347, 2016.

[21] Z. Liu, Y. Guo, M. Sealy, and Z. Liu, “Energy consumption and process 
sustainability of hard milling with tool wear progression,” Journal of 
Materials Processing Technology, vol. 229, pp. 305–312, 2016.

[22] F. Draganescu, M. Gheorghe, and C. Doicin, “Models of machine tool 
efficiency and specific consumed energy,” Journal of Materials Processing 
Technology, vol. 141, no. 1, pp. 9–15, 2003.

[23] M. Kolar, J. Vyroubal, and J. Smolik, “Analytical approach to 
establishment of predictive models of power consumption of machine 
tools’ auxiliary units,” Journal of Cleaner Production, vol. 137, pp. 361–369, 
2016.

[24] H. Kader, R. Ströbel, A. Puchta, J. Fleischer, B. Noack, and M. 
Spiliopoulou, “Feature ranking for the prediction of energy consumption 
on CNC machining processes,” in 2024 IEEE International Conference on 
Multisensor Fusion and Integration for Intelligent Systems (MFI), 2024, 
pp. 1–7.

[25] K. Smagulova and A. P. James, “A survey on LSTM memristive neural 
network architectures and applications,” The European Physical Journal 
Special Topics, vol. 228, no. 10, pp. 2313–2324, 2019.

[26] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “A comparison of ARIMA 
and LSTM in forecasting time series,” in 2018 17th IEEE international 
conference on machine learning and applications (ICMLA). Ieee, 2018, pp. 
1394–1401.

[27] R. Fu, Z. Zhang, and L. Li, “Using LSTM and GRU neural network 
methods for traffic flow prediction,” in 2016 31st Youth academic annual 
conference of Chinese association of automation (YAC). IEEE, 2016, pp. 
324–328.

[28] R. Ströbel, Y. Probst, and J. Fleischer, “Training and validation dataset 
of milling processes for time series prediction,” Karlsruhe Institute of 
Technology. doi: 10.5445/IR/1000157789, 2023.

[29] R. Ströbel, M. Mau, S. Deucker, and J. Fleischer, “Training and 
validation dataset 2 of milling processes for time series prediction,” 
Karlsruhe Institute of Technology. doi: 10.35097/1738, 2023.

[30] P. Gönnheimer, R. Ströbel, R. Dörflinger, M. Mattes, and J. Fleischer, 
“Interoperable system for automated extraction and identification of 
machine control data in brownfield production,” Manufacturing Letters, 
vol. 35, pp. 915–925, 2023.

[31] T. O. Hodson, T. M. Over, and S. S. Foks, “Mean squared error, 
deconstructed,” Journal of Advances in Modeling Earth Systems, vol. 13, 
no. 12, e2021MS002681, 2021.

Papers | AI4EA



96 GFaI-TAGUNGSBAND 2024

Feedback-driven object detection and iterative model improvement 
for accurate annotations

Sönke Tenckhoff*, Mario Koddenbrock*, and Erik Rodner
* These authors contributed equally to this work.

KI-Werkstatt/Fachbereich 2, University of Applied Sciences Berlin,
Wilhelminenhofstr. 75A, 12459 Berlin, Germany
firstname.lastname@htw-berlin.de

Abstract. Automated object detection has become 
increasingly valuable across diverse applications, yet 
efficient, high-quality annotation remains a persistent 
challenge. In this paper, we present the development 
and evaluation of a platform designed to interactively 
improve object detection models. The platform allows 
uploading and annotating images as well as fine-tuning 
object detection models. Users can then manually 
review and refine annotations, further creating improved 
snapshots that are used for automatic object detection 
on subsequent image uploads—a process we refer to as 
semi-automatic annotation resulting in a significant gain 
in annotation efficiency.

Whereas iterative refinement of model results to speed 
up annotation has become common practice, we are the 
first to quantitatively evaluate its benefits with respect 
to time, effort, and interaction savings. Our experimental 
results show clear evidence for a significant time 
reduction of up to 53% for semi-automatic compared to 
manual annotation. Importantly, these efficiency gains 
did not compromise annotation quality, while matching 
or occasionally even exceeding the accuracy of manual 
annotations. These findings demonstrate the potential 
of our lightweight annotation platform for creating high-
quality object detection datasets and provide best 
practices to guide future development of annotation 
platforms.

The platform is open-source, with the frontend and 
backend repositories available on GitHub1. To support the 
understanding of our labeling process, we have created 
an explanatory video demonstrating the methodology 
using microscopy images of E. coli bacteria as an 
example. The video is available on YouTube2.

 
Keywords. object detection · global average times 
· semi automatic annotation · bounding boxes · active 
learning

1 https://github.com/ml-lab-htw/iterative-annotate
2 https://www.youtube.com/watch?v=CM9uhE8NN5E

1 INTRODUCTION

Object detection has become a critical component in 
various computer vision applications, including but 
not limited to autonomous driving [19], surveillance[7], 
robotics [9], microscopy [13], and manufacturing [3]. 
These applications rely on high-quality labeled datasets 
to train and fine-tune models. Traditionally, creating such 
datasets requires manually tagging images—a process 
that is both labor-intensive and prone to human error. 
As object detection models continue to evolve, so do 
the strategies for efficiently generating these annotated 
datasets, which has become a key research focus [21,8].

While accurate, manual annotation is not scalable for 
large datasets. Consequently, there has been growing 
interest in methods that integrate machine learning 
techniques to assist with image labeling, particularly 
in semi-automatic annotation workflows [5,4]. Semi-
automatic annotation bridges the gap between fully 
manual and fully automated annotation by combining 
the strengths of machine learning and human expertise. 
Fully automated systems often struggle with rare or 
ambiguous cases, while semi-automatic methods allow 
human annotators to correct these mistakes, resulting in 
higher accuracy and efficiency. This approach promises 
to significantly improve efficiency without compromising 
the quality of annotations.

In this paper, we introduce a platform designed to 
enhance the object detection labeling process through an 
interactive, feedback-driven loop that iteratively refines 
model-generated annotations. Our platform allows users 
to create and manage annotation projects, upload image 
bundles, and apply a pre-trained Single Shot Detector 
(SSD) [12] to perform initial object detection and labeling. 
Users can then manually adjust the generated labels, 
which are used to incrementally fine-tune the model’s 
performance, creating snapshots for future predictions. 
This iterative process, which we refer to as semi-
automatic annotation, aims to reduce annotation time 
while maintaining high accuracy. The workflow of the 
labeling process is illustrated in Fig. 1.
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We evaluate the platform by conducting quantitative 
experiments to assess the efficiency of semi-automatic 
annotations versus fully manual annotation workflows. 
Our results demonstrate a significant time-saving of 
up to 53% without compromising annotation quality. 
The findings presented in this paper provides further 
quantitative insights and best practices with respect to 
semiautomatic annotation.

2 RELATED WORK

Efficient image annotation is essential for training high-
quality object detection models. Manual annotation tools 
such as LabelMe [16] and VGG Image Annotator [6] 
laid the groundwork by providing interfaces for human 
annotators to label images. While accurate, manual 
annotation is time-consuming and not scalable for large 
datasets.

Iterative refinement or semi-automatic annotation is 
indeed a common strategy (see [1,17,2,14] just for a few 
examples). However, a extensive quantiative evaluation of 
the resulting speed-up as well as suitable best practices 
are missing in the literature. Semi-automatic annotation 
systems, such as Amazon Sage- Maker Ground Truth 
[4], combine machine learning with human-in-the-loop 
corrections, speeding up the annotation process without 
sacrificing quality. Similarly, Papadopoulos et al. [15] 
demonstrated how interactive tools could reduce the 
time required by allowing users to refine pre-labeled 
bounding boxes generated by object detectors.

Fig. 1: Illustration of the iterative annotation workflow 
in our platform. The process begins with a pre-trained 
object detection model predicting bounding boxes on 
unlabeled images. Users then correct these predictions, 
and the refined annotations are fed back into the 
model for incremental improvement. This feedback 
loop progressively enhances model accuracy, reducing 
manual annotation effort over time.

The concept of iterative refinement has 
also been extensively explored from 
an active learning perspective, where 
algorithms select suitable yet unlabeled 
examples to be annotated or reviewed 
[18]. Tools like LabelStudio [20] apply 
this feedback loop in object detection, 
enabling the model to learn from 
progressively refined annotations.

Our platform builds on these 
advancements by combining the strengths 
of semi-automatic annotation with an 

iterative refinement mechanism. This approach reduces 
the manual annotation workload while continuously 
improving model accuracy. Our approach can be of course 
combined with active learning techniques, however, we 
decided to focus on semi-automatic annotation only.

3 PLATFORM DESIGN AND IMPLEMENTATION

Building on these previous advancements, our work 
focuses on the integration of semi-automatic annotation 
with iterative model refinement to address the limitations 
observed in manual workflows. The platform leverages 
semi-automatic annotation, where users correct initial 
model predictions, and these corrections are used to 
incrementally improve the model. This process is shown 
in Fig. 1. It involves:

1. Generating predictions using the SSD model.

2. Allowing users to refine the annotations.

3. Using the refined annotations to fine-tune the model 
incrementally.

3.1 OBJECT DETECTION MODEL

At the core of the platform’s object detection capabilities 
is a standard SSD model[12]. We employ an SSD300 
model pre-trained on the COCO dataset [10], chosen for 
its balance between speed and accuracy. SSD predicts 
bounding boxes and object classes in a single forward 
pass, making it ideal for real-time annotation tasks.

3.2 USER INTERFACE

The platform’s user interface (UI) is intuitive and user-
friendly, facilitating efficient annotation of large image 
datasets. It consists of several components guidingusers 
through project creation, annotation, and model fine-
tuning.
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Project Management Interface The project management 
interface allows users to create, manage, and monitor 
annotation projects. Fig. 2 (left) shows a summary of 
active projects, with key statistics like uploaded image 
bundles and fine-tuning status. Users can start new 
projects, upload images, and review progress through 
detailed metrics.

Annotation Editor The annotation editor enables users 
to review and refine bounding boxes generated by the 
model. Fig. 2 (right) shows the interface for adjusting, 
resizing, or deleting boxes. Users can also add new boxes 
for missed objects, improving annotation quality through 
real-time feedback.

Fine-Tuning Setup After refining annotations, users 
initiate model fine-tuning. The user interface allows 
selection of image bundles, model snapshots, and 
training configurations. Performance metrics, such as 
accuracy and loss values, help users track progress and 
make decisions on further training.

Snapshot Management Snapshot management ensures 
version control during fine-tuning. Users can view 
different versions, compare performance, and roll back 
when needed, aiding experimentation.

User Interaction and Shortcuts The UI supports 
keyboard shortcuts for actions like navigating images 
and adjusting labels, improving efficiency. The platform 
is also optimized for minimal interaction, ensuring that 
users can complete the annotation and fine-tuning 
processes with as few clicks as possible.

Fig. 2: The user interface (UI) of the annotation platform. 
The left pane shows the project management interface, 
where users can manage projects, view uploaded image 
bundles, and monitor the status of model fine-tuning. 
The right pane displays the annotation editor, where 
users can review and adjust predicted bounding boxes, 
creating high-quality annotations through a semi-
automatic workflow.

4 QUANTITATIVE EVALUATION

4.1 DATASETS

The platform was evaluated using the agricultural dataset 
of [11], selected for its challenging conditions that closely 
simulate real-world agricultural environments. This 
dataset, consisting of 200 images captured from an 
autonomous agricultural robot, includes annotated rows 
of crops from multiple angles and under varying lighting 
conditions. For our experiments, the dataset was divided 
into 20 bundles, each containing 10 images, allowing 
systematic testing of the platform’s adaptability across 
diverse scenarios. As shown in Fig. 3, these variations— 
including dense foliage, occlusions, and inconsistent 
lighting—created a complex environment for the object 
detection model. Such characteristics enabled us to 
rigorously assess the platform’s performance in handling 
domainspecific object detection tasks in realistic 
agricultural monitoring scenarios.

4.2 PERFORMANCE MEASURES

To evaluate the performance of the platform, we 
employed several key metrics commonly used in object 
detection tasks: a) mean intersection over union (IoU), for 
measuring bounding box overlap between detection and 
ground-truth. We also calculated the b) F1 score, which 
is the harmonic mean of precision and recall. Precision 
and recall were calculated using an IoU threshold of 0.5 
to determine true positives for single detections. The F1 
score was computed per image bundle. For the semi-
automatic approach, the F1 score was calculated after 

the automatic labeling was 
completed, to quantify how 
much manual intervention 
was still required to improve 
accuracy.
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Fig. 4: Comparison of the average annotation time per 
bundle (in seconds) between manual and semi-automatic 
processes. The results show a significant time reduction 
using the semi-automatic approach, particularly in later 
bundles as the model’s accuracy improves, reducing the 
need for manual intervention.

Fig. 3: Example images from the agricultural 
dataset [11], captured by an autonomous 
agricultural robot. These images illustrate 
some of the challenging conditions 
encountered during the annotation process, 
including varying camera distances, shadows, 
and partial occlusion of plants.

Another critical aspect of the platform’s 
evaluation was annotation efficiency. We 
measured the time required for manual 
annotation and compared it to the time spent 
using the semi-automatic annotation process. In addition, 
we tracked specific user interactions, including the 
number of bounding boxes created, adjusted, or deleted 
during the process, allowing for a detailed analysis of 
the effort saved by using the platform. All measurements 
were performed on the dataset described in section 4.1.

(a) Five plants in a 
row, with one partially 
cut off at the edge. 
The image is taken 
from a relatively large 
distance.

(b) Two plants in a 
row, with one partially 
cut off. The camera is 
positioned very close 
to the plants.

(c) Two plants partially 
obscured by a shadow 
with high contrast.

(d) Two plants visible at 
the edge of the image, 
with soil disturbances 
and tracks in the 
foreground.

5 RESULTS

The experiments conducted in this study demonstrate 
the effectiveness of the proposed semi-automatic 
annotation platform. The key findings are summarized as 
follows:

1. The semi-automatic annotation process reduced 
annotation time by up to 53.82% compared to manual 
labeling, especially in later iterations as the model’s 
predictions improved.

2. User interaction effort, significantly decreased in the 
semi-automatic process, with nearly no manual box 
creation needed by the 20th bundle.

3. F1 scores for semi-automatic annotations matched 
or exceeded the quality of manual annotations, 
ensuring that the efficiency gains did not compromise 
accuracy.

5.1 EFFICIENCY GAINS

A key objective of this work was to reduce the time 
required for object annotation. Our experiments, show 
significant time savings using the semi-automatic 
annotation platform compared to manual labeling. Fig. 4 
provides a comparison of the annotation duration across 
different bundles. It shows, that the semiautomatic 
process reduces the time spent on annotation by up to 
53.82%, with the most significant reductions observed 
in later bundles, where the model’s accuracy improved. 
So as the model becomes more refined, user intervention 
decreases.
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5.2 INTERACTION TIME REDUCTION

In addition to overall time savings, we measured the time 
required for individual user interactions, such as creating, 
adjusting, or removing bounding boxes. Fig. 5 illustrates 
the time taken for each interaction in both manual and 
semi-automatic workflows. The results show that the 
semi-automatic process required less time on almost 
every bundle, with up to 67% less time needed for the 
creation of bounding boxes compared to the manual 
approach.

5.3 MODEL PERFORMANCE

As shown in Fig. 6 (left), F1 score improved consistently 
over the course of multiple feedback loops, with the semi-
automatic approach achieving comparable performance 
to the manual approach after just 5 iterations. This 
indicates that the semi-automatic method significantly 
reduces the need for manual corrections and can function 
as a fully automated process after sufficient iterations.

Fig. 5: User interaction time metrics comparing the time 
required for creating, adjusting, or removing bounding 
boxes in manual and semi-automatic workflows.

Fig. 6: F1 score (left) and mean Intersection over Union 
(IoU) (right) over multiple iterations of annotation. The 
analysis is shown up to bundle step 10, because the semi-
automatic approach achieved comparable performance 
to the manual approach by bundle 5, with no further 
significant divergence in subsequent bundles.

5.4 ANNOTATION QUALITY

In contrast to detection performance, annotation quality 
was assessed using Intersection over Union (IoU), a 
widely recognized metric for object detection tasks. IoU 
measures the overlap between the predicted bounding 
box and the ground truth bounding box, providing a value 
between 0 and 1. A higher IoU indicates better alignment 
between the predicted bounding boxes and the actual    
objects in the image, thus reflecting higher annotation 
accuracy.

6 CONCLUSION

In this work, we presented a feedback-driven, semi-
automatic annotation platform designed to iteratively 
improve object detection models. The primary goal was to 
evaluate the efficiency of such a platform in reducing the 
time and effort required for creating high-quality labeled 
datasets compared to traditional manual annotation 
methods. Through the integration of user feedback 
and iterative model fine-tuning, we demonstrated that 
the proposed system achieves significant gains in 
annotation efficiency without compromising accuracy. 

In this study, the mean IoU was calculated per image 
bundle, allowing us to track the improvements in 
annotation quality over the iterative annotation steps. For 
the semi-automatic approach, mean IoU was computed 
after the automatic labeling, to assess how accurately 
the model was able to label objects without requiring 
further manual adjustments.

The results indicate a steady increase in mean IoU from 
0.68 in the first bundle to 0.83 in the final bundle, as 
illustrated in Fig. 6 (right). The comparison shows that 
automatically generated bounding boxes quickly catch 
up to the accuracy of manual annotations, with the final 
iterations producing IoU scores that are on par with fully 
manual approaches. Eventually, the semi-automatic 
approach transitions into a fully automated process as 
the model becomes capable of producing high-quality 
labels independently.
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Our experimental results show that the semi-automatic 
annotation process can reduce annotation time by up to 
53.82% compared to manual labeling, while maintaining or 
even improving the quality of the annotations. Intersection 
over Union (IoU) showed consistent improvements across 
multiple iterations, indicating that the platform effectively 
enhances the model’s performance over time. These 
results validate the effectiveness of the semi-automatic 
approach, especially for large-scale datasets, where 
manual annotation becomes impractical.

The ability to provide feedback to the model in a dynamic, 
iterative manner highlights the importance of a human-in-
the-loop approach, where machine learning techniques 
complement human expertise to accelerate the dataset 
creation process.
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Abstract. Investment casting is one of the main 
production processes for aerospace applications. The 
melt is poured into ceramic shell molds which allow the 
casting of very fine geometrical features for turbine blades 
and vane rings. The ceramic shell is therefore crucial for 
the casting quality. One of the most frequent occurring 
issues in the ceramic shell production are flow lines. 
Traditionally, manual inspection is conducted for quality 
control. Over the years, Access e.V. has accumulated 
an extensive archive of handmade pictures of ceramic 
shells, exhibiting great potential for AI applications. This 
study aimed to evaluate the feasibility of applying two 
advanced computer vision algorithms, Mask R-CNN and 
nnU-Net, to detect the flow lines on ceramic shells. A 
multi-stage approach was applied to expand the training 
dataset of 17 images to 127 images. Each image was 
annotated together with ceramic experts. Both Mask 
R-CNN and nnU-Net algorithms were then tested on 
the same validation dataset for comparison. The results 
showed that both demonstrated very good capabilities 
in detecting the defect, with the nnU-Net model 
showing superior performance. It was also observed 
that the model of nnU-Net trained on larger datasets 
didn’t necessarily improve the detection results due to 
the extra noise introduced, whereas the Mask R-CNN 
model experienced significant improvement. The results, 
however, underline the potential of AI-driven automated 
defect detection. Future work will focus on expanding 
the models’ capability to detect multiple defects and 
integrating the developed AI models with an automated 
camera system for real-time quality monitoring. This 
will streamline the quality control process and reduce 
significantly the time required by manual inspections for 
ceramic shell production.

 
Keywords. Investment casting · ceramic shells · defect 
detection · artificial intelligence · computer vision · Mask 
R-CNN · nnU-Net.

1 INTRODUCTION

Investment casting, also known as lost-wax casting, is a 
precision manufacturing technique that has been used for 
centuries to produce intricate components with complex 
geometries [1, 2]. At the heart of this process are the 
ceramic shells, which function as molds that define the 
final shape, accuracy, and quality of the castings [3,4]. 
These ceramic shells must exhibit high precision, surface 
integrity and stability to meet the stringent requirements 
of industries like aerospace, automotive, and biomedical 
sectors [5].

The ceramic shell is created by first forming a wax pattern 
of the desired part, which is then repeatedly dipped into 
a ceramic slurry and coated with fine refractories to build 
up layers—a process called shelling [6].After sufficient 
buildup and drying, the wax is melted away, and the 
shell undergoes debinding and sintering to achieve the 
necessary strength, resulting in a hollow mold for casting. 
Throughout this process, it is challenging to maintain 
consistent quality, as various problems such as surface 
cracks, inclusions, shell thickness irregularities, and flow 
lines can occur [4, 7, 8]. Among these, flow lines occur 
particularly frequently.

Flow lines are caused by unwanted accumulations of 
the ceramic slurry and sand mixture on the shell surface 
[7,9]. This issue often arises due to insufficient draining 
time, improper shell positioning, undercuts in geometries 
or high slurry viscosity [7–9]. Flow lines are especially 
common during the early stages of shell production 
when process parameters—such as slurry composition, 
draining time, and handling techniques—are still being 
optimized. These defects lead to uneven layer application, 
which changes the local thermal conditions and could 
result in defects in the castings [8].Traditionally, ceramic 
shell quality has been assessed through visual inspection 
by skilled operators, which is time-consuming and prone 
to subjectivity and human error [10].
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Leveraging advanced deep learning techniques could 
provide a viable solution for automating the defect 
detection process, thereby addressing the limitations of 
human inspection [11–13]. Bhatt et al. [14] showcased 
how image-based defect detection improved inspection 
accuracy in aerospace industry while reducing reliance 
on manual inspection. Birlutiu et al. [15] applied deep 
learning techniques to detect surface anomalies, where 
even subtle defects were detected which could even 
be missed by human inspection. In the casting industry, 
Ferguson et al. [16] also demonstrated the effectiveness 
of CNN-based defect detection, using transfer learning 
to identify small-sized defects of castings with limited 
datasets.

Despite advances in artificial intelligence, its application 
in investment casting— specifically for detecting ceramic 
shell defects remains limited, highlighting a significant gap 
in the field. Flow lines are particularly challenging to detect 
due to their thin, irregular appearance and tendency to 
blend seamlessly with surrounding surface textures. Even 
deep learning models like convolutional neural networks 
struggle to identify these defects because they often 
merge indistinguishably with the material’s texture [17]. 
While AI methods have improved the detection of more 
apparent surface defects such as cracks and porosity in 
casting industries [17], flow lines remain understudied. To 
address the challenge of detecting flow lines in ceramic 
shells, we studied two advanced deep learning models: 
Mask R-CNN for instance segmentation and nnU-Net for 
semantic segmentation.

Mask R-CNN builds upon the Faster R-CNN framework 
by adding a branch that predicts segmentation 
masks for each detected region of interest, making 
it suitable for irregular and varying-sized defects [18, 
19]. It is capable of detecting individual defects and 
precisely localize them, which makes it ideal for isolated 
or distinct flow lines [18]. Mask R-CNN has proven 
effective in industries like motor part inspections, where 
small, subtle defects are critical. Techniques such as 
data augmentation and transfer learning have enhanced 
its performance, especially with limited data [20]. Its 
adaptability to different types of defects makes it a 
promising choice for ceramic defect detection.

The nnU-Net model, based on the U-Net architecture, 
features a symmetrical encoder-decoder structure with 
skip connections [21]. This design retains fine-grained 
spatial information essential for precise segmentation 
tasks. Its automated optimization makes it highly 
adaptable to different datasets, which is crucial for 
identifying fine-grained continuous patterns that may 

not be easily distinguishable as individual objects [22, 
23]. nnU-Net has shown success in identifying subtle 
cracks due to its ability to automatically adapt to different 
datasets, enhancing robust pixel-level segmentation [22]. 
This capability allows nnU-Net to detect fine defects 
that traditional methods might overlook, consistently 
achieving high accuracy across various scenarios. 

However, each model has limitations. Mask R-CNN may 
struggle with defects that cannot be neatly separated 
into distinct instances, while nnU-Net might find it 
difficult to differentiate overlapping defects or those 
with ambiguous boundaries. This study aims to test the 
feasibility of both algorithms in detecting flow lines on 
ceramic shells in investment casting.

2 METHODOLOGY

2.1 THE TRAINING PIPELINE

Figure 1 illustrates the general pipeline used in this study 
to detect flow lines in ceramic shells using Mask R-CNN 
and nnU-Net. The pipeline involves several steps. First, 
high-resolution images of ceramic surfaces capturing 
potential defects are acquired. These images are then 
annotated by ceramic experts, marking the flow lines. 
Next, the annotated dataset is used to train Mask R-CNN 
for instance segmentation and nnU-Net for pixel-level 
semantic segmentation. The predictions made by these 
models are then evaluated using metrics introduced in 
section 2.3.

Fig. 1: Illustration of general training pipeline

This process is iterative and is repeated several times 
as the dataset grows. The first training was conducted 
with Mask R-CNN using a dataset consisting of only 25 
images exhibiting flow lines. These images were hand-
picked by ceramic experts and captured under various 
lighting conditions during real-world shelling processes. 
The trained Mask R-CNN model was then used to filter a 
large database of over 2000 handmade ceramic images, 
pre-select images exhibiting flow lines to expand the 
dataset. These images were then manually examined to 
finalize which images to add to the dataset. In all these 
images, the flow lines were manually annotated using the 
VGG Image Annotator (VIA) tool under the supervision of 
experts, to ensure accurate representations of defects 
and to facilitate effective model training. The size of the 
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dataset grew iteratively in this manner and eventually 
resulted in two differently sized training datasets 
consisting of 41 and 127 images for the comparative 
study, with another 8 images as a validation dataset 
serving as the common ground for evaluation of both 
algorithms. Initially the smaller dataset was tested before 
introducing the larger one to assess the impact of data 
size on generalization and learning capacity.

2.2 IMPLEMENTATION OF MASK R-CNN AND NNU-
NET ALGORITHMS

With the key parameters summarized in table 1, the details 
for both Mask RCNN and nnU-Net that are implemented 
in this study are introduced.

Mask R-CNN Implementation   Mask R-CNN allows images 
to be input in their original formats without extensive 
preprocessing, preserving the authentic characteristics 
of the ceramic surfaces. A custom configuration class 
was implemented, utilizing the ResNet-101 architecture 
for its deep layers that enhance the extraction of complex 
features critical for detecting subtle defects [24]. Key 
parameters such as minimum detection confidence, RPN 
anchor scales, learning rate, optimizer, and augmentation 
techniques were carefully selected based on empirical 
evaluations to optimize performance [25]. The model 
was trained for approximately 500 epochs, with all 
layers fine-tuned to leverage comprehensive feature 
representations. Data augmentation techniques like 
rotations, flipping, and scaling were applied to simulate 
diverse defect appearances and prevent overfitting.

nnU-Net Implementation   The nnU-Net model was 
implemented following the official guidelines [23], which 
automatically adapt the architecture and parameters 
based on the dataset’s characteristics. Intensity 
normalization and binary mask encoding were performed 
during dataset preparation to ensure consistency 
[23, 26]. The dataset was structured as per nnU-Net’s 
requirements, including organizing images and labels in 
a standardized format to ensure smooth model training 
[23].The 2D U-Net architecture was employed due to the 
availability of 2D images. The framework automatically 
adjusted key parameters such as input patch size, batch 
size, and network depth for optimal performance [27]. 
The loss function combined cross-entropy with Dice loss 
to enhance segmentation accuracy [28]. The model was 
trained using stochastic gradient descent with Nesterov 
momentum [29] over 1000 epochs, with a dynamically 
reduced learning rate based on performance plateaus 
[30]. Data augmentation techniques, including random 
rotations, flips, scaling, and intensity shifts, are applied 
to improve robustness and generalizability [31].

Parameter Mask R-CNN nnU-Net
Architecture Mask R-CNN 

(ResNet-101)

2D U-Net

Depth Not specified 9 stages

Feature maps per 

stage

Not specified 32, 64, 128, 256, 512, 

512, 512, 512, 512

Convolution kernel 3 x 3 3 x 3

Patch size Not applicable 1024 x 1536 pixels

Batch size 2 2

Learning rate 0.001 0.01 - 0.0001

Optimizer Adam SGD with Nesterov 

momentum

Normalization Not specified Instance Normalization

Activation function ReLU Leaky ReLU

Min. detection 

confidence

0.9 Not applicable

RPN anchor scales [32, 64, 128, 256, 512] Not applicable

Augmentation Rotation, flipping, 

scaling

Rotation, flipping, 

scaling, 

intensity shifts

Epochs 500 1000

Deep supervision Not applicable Enabled

Loss function Cross-Entropy Dice + Cross-Entropy

Input channels 3 (RGB) 3 (RGB)

Channel normalization Not specified Z-score

Tab. 1: Key parameters of the implemented Mask R-CNN 
and nnU-Net

2.3 EVALUATION METRICS

To comprehensively evaluate the performance of the 
Mask R-CNN [18] and nnUNet [23] algorithms in detecting 
flow lines on ceramic shells, a multi-faceted evaluation 
approach was employed, integrating qualitative visual 
assessments, quantitative metrics, and the customized 
precision score tailored to the detection objectives.

Visual Evaluation    The initial phase of the evaluation 
involved visual inspection. Side-by-side comparisons 
of original images, ground truth annotations, and model 
predictions were conducted, providing a direct qualitative 
assessment of model performance [32]. The following 
aspects were focused on during the visual inspection:

– Prediction Results Evaluation: Determining whether all 
ground truth defects were successfully identified by both 
models.

– False Positive Analysis: Systematically analyzing 
instances where models produced false positives, 
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Metric Description Formula1

Accuracy Measures the ratio of 

correctly predicted pixels 

(both defect and non-

defect) to the total number 

of pixels [34].

TP+TN
TP+TN+FP+FN

Precision Ratio of correctly identified 

defect pixels to all pixels 

predicted as defects [36].

TP
TP+FP

Recall Ratio of correctly identified 

defect pixels to all actual 

defect pixels [36].

TP
TP+FN

IoU Measures the overlap 

between predicted and 

ground truth segmentation 

masks [34].

TP
TP+FP+FN

Dice 

Coefficient

Similar to IoU, assesses 

the overlap between 

predicted and ground truth 

masks [28].

2×TP
2×TP+FP+FN

Hausdorff 

Distance

Measures the maximum 

distance between the 

predicted segmentation 

and the ground truth [37].

No specific formula

Tab. 2: Quantitative metrics for model evaluation

1Abbreviations used in the formulas: TP: True Positives; TN: True Negatives; 
FP: False Positives; FN: False Negatives.

examining their context and potential causes.

– Model Comparison: Comparing the performance of 
Mask R-CNN and nnU-Net, as well as assessing the 
impact of dataset size expansion within each model.

Due to the different nature of instance segmentation 
(Mask R-CNN) and semantic segmentation (nnU-Net), 
Mask R-CNN predictions were converted to binary masks 
by merging all detected instances into a single output 
[33]. This step ensured comparability given the focus 
on detecting a single defect type. Following the visual 
evaluation, the models were evaluated quantitatively 
using established metrics.

Quantitative Metrics   Several standard quantitative 
metrics were employed to rigorously evaluate model 
performance [34, 35]. These metrics are calculated at 
the pixel level, rather than in the traditional classification 
sense. Pixels aligning with ground truth mask pixels 
are considered true positives, providing a detailed 
assessment of model accuracy in segmenting defect 
regions. The details are summarized in table 2.

Calibrated Precision Score     A calibrated precision 
score was developed as a post-processing strategy to 
address the limitations of strict pixel-level calculations 
described above. In practical applications, accurately 
identifying the presence of a defect is more important 
than achieving pixel-perfect predictions. However, the 
standard precision score does not fully capture this 
capability. For instance, models may be penalized with 
lower precision scores even when defects are correctly 
identified, due to slight misalignments in the predicted 
masks or predictions with very small areas. To better 
reveal and compare model performance in the practical 
context, following calibration of standard precision score 
was implemented.

The first step involved removing noises, specifically small 
predictions likely to be false positives. This was done 
by filtering out noise using a threshold derived from the 
smallest annotation in the ground truth. Specifically, the 
threshold was set at 20 percent of the pixel count of the 
smallest ground truth annotation. If any predicted masks 
contained fewer pixels than the threshold, they were 
removed, thus enhanced the quality of the predicted 
masks. The precision scores were then calculated using 
the standard formula, providing a more meaningful 
comparison of the models and emphasizing their practical 
capability to detect defects in real-world scenarios.
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Fig. 2: Qualitative comparison of predicted masks from 
Mask R-CNN and nnU-Net for 4 validation images. 
Abbreviations are as follows: Gr.: Ground truth; M_S: Mask 
R-CNN trained on the small dataset; M_L: Mask R-CNN 
trained on the large dataset; N_S: nnU-Net trained on the 
small dataset; N_L: nnU-Net trained on the large dataset.

3 RESULTS

3.1 QUALITATIVE RESULTS

Figure 2 presents 4 representative examples of defect 
detection results from both algorithms, nnU-Net and 
Mask R-CNN, on the validation dataset containing flow 
lines. For each algorithm, two models trained on the 
small (denoted with „_S“) and large datasets (denoted 
with „_L“), respectively, are included: Mask R-CNN_S, 
Mask R-CNN_L, nnU-Net_S, and nnU-Net_L. To ensure 
comparability between the semantic segmentation 
outputs of nnU-Net and the instance segmentation 
outputs of Mask R-CNN, all detected instances from 
Mask R-CNN were merged into binary masks.

The visual inspection showed that both models 
successfully detected most of the ground truth defects 
across various test images. Notably, nnU-Net_S produced 
more precise predictions, closely following the contours 
of the defects. For example, for image 3 in figure 2, nnU-
Net_S’s prediction aligns accurately with the contour 
of the ground truth annotation, whereas both Mask 
R-CNN_S and Mask R-CNN_L show slight deviations to 
that. Mask R-CNN also exhibited a higher tendency to 
produce false positives, especially when trained on the 
smaller dataset (Mask R-CNN_S). In the same image, 
Mask R-CNN_S incorrectly identified geometrical features 
as defects, possibly due to the complex surface textures. 
In contrast, nnU-Net_S demonstrated better control 
over false positives in similar areas, indicating a more 
robust performance against such confounding factors. 
Comparing the performance between models and within 
models due to dataset size expansion revealed distinct 
trends. For Mask R-CNN, increasing the training dataset 
size to create Mask R-CNN_L reduced clearly the number 
of false positives and improved the model’s ability to 
distinguish defects from geometrical features, as seen in 
all images in figure 2. However, for nnUNet, increasing 
the dataset size to create nnU-Net_L did not notably 
enhance performance. In some cases, nnU-Net_L even 
missed defects that nnU-Net_S detected, resulting in 
false negatives—for instance, in figure 2, Image 2.

The qualitative results suggest that nnU-Net_S 
outperformed the other models, offering higher precision 
with fewer false positives. The expansion of the dataset 
size improved Mask R-CNN’s performance but had a 
limited impact on nnU-Net. These findings show the 
importance of model selection and dataset size in 
defect detection tasks. To confirm these results and 
provide further assessment of the models’ performance, 
evaluations using quantitative metrics is conducted and 
shown below.

3.2 QUANTITATIVE RESULTS

The quantitative metrics introduced in the methodology 
section are applied to all four models. The confusion 
matrix on pixel level and the Hausdorff distance for each 
model is shown in table 3. Based on that, the result of 
calculated quantitative metrics is shown graphically in 
figure 3.
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Metric Mask R-CNN_S Mask R-CNN_L nnU-Net_S nnU-Net_L

Confusion Matrix Elements
True Negatives 60,364,894 61,134,283 62,062,874 62,095,151

False Positives 1,979,562 1,210,173 281,582 249,305

False Negatives 608,253 446,099 641,719 691,751

True Positives 748,283 910,437 714,817 664,785

Hausdorff Distance 28.1286 21.7297 20.3734 21.9567

Tab. 3: Confusion matrix on pixel-level & Hausdorff 
distance

Fig. 3: Comparison of segmentation results with 
quantitative metrics

Note: Best values for each 
metric are highlighted in 
bold.

Model performance    All models achieved high overall 
accuracy, ranging from 95.94% to 98.55%, with nnU-
Net_S performing best at 98.55%. However, due to the 
class imbalance (with over 60 million true negatives), 
accuracy alone is not a sufficient indicator of performance. 
A key distinction emerged between the models in terms 
of precision and recall, where nnU-Net_S demonstrated 
the highest precision at 81.29%, making it more 
conservative and effective at reducing false positives, 
though it exhibited lower recall (52.71%), meaning 
it missed more defects. Conversely, Mask R-CNN_L 
achieved the highest recall at 67.50%, indicating its 
sensitivity in detecting defects but with a lower precision 
(54.90%), leading to more false positives. The IoU and 
Dice Coefficient metrics confirmed these trends, with 
nnU-Net_S slightly outperforming Mask R-CNN_L in both 
IoU (43.19% vs. 42.97%) and Dice Coefficient (59.55% 
vs. 57.79%). This highlights that while both models 
offered a balanced performance, nnU-Net_S exhibited 
a more cautious approach in its predictions, whereas 
Mask R-CNN_L showed a more aggressive approach in 
capturing potential defects.

Impact of Dataset Size     The dataset size 
had a notable impact on the performance 
of Mask R-CNN models, but less so for 
nnU-Net models. Transitioning from Mask 
R-CNN_S to Mask R-CNN_L resulted in 
significant improvements across metrics: 
precision nearly doubled (from 28.48% to 
54.90%) and recall also increased (from 
60.69% to 67.50%). This suggests that 
the Mask R-CNN architecture benefited 
substantially from the larger dataset, which 
enhanced its generalization capabilities and 
reduced false positives. In contrast, the 
nnU-Net models did not show similar gains. 
Increasing the dataset size from nnU-Net_S 
to nnU-Net_L actually led to a decline in 
performance, with precision dropping from 
81.29% to 63.80% and recall from 52.71% to 

47.80%. This unexpected result suggests that nnU-Net 
may already perform optimally with a smaller dataset 
for this specific task, or that additional data introduced 
complexity that the model struggled to leverage 
effectively.

Hausdorff Distance      The Hausdorff Distance, which 
measures the maximum deviation between predicted 
and ground truth boundaries, further illustrates the 
models’ performance and dataset’s impact. nnU-
Net_S exhibited the lowest Hausdorff Distance (20.37), 
demonstrating its superior ability to precisely capture the 
boundaries of defects, which is essential for accurate 
defect characterization. In contrast, Mask R-CNN_S had 
the highest Hausdorff Distance (28.13), indicating less 
precise boundary delineation. Mask R-CNN_L showed 
significant improvement (21.73), confirmed the positive 
impact of dataset size on this model.

These quantitative results indicate that both algorithms 
have distinct strengthsand trade-offs. For applications 
requiring high precision and minimal false positives, 
the model nnU-Net_S is the preferred choice due to 
its conservative nature and more accurate boundary 
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predictions. On the other hand, 
Mask R-CNN_L is better suited for 
applications where detecting as many 
defects as possible (high recall) is 
prioritized, even if it means accepting 
more false positives. The choice 
of model should depend on the 
specific requirements of the defect 
detection task. If missing a defect 
is more detrimental than dealing 
with false positives, Mask R-CNN_L 
is preferable. Conversely, for tasks 
where false positives carry a higher 
cost, nnU-Net_S is more appropriate.

3.3 CALIBRATED PRECISION 
SCORE RESULTS

Using the custom evaluation metrics described in the 
methodology, all four models based on their predictions 
on 8 unseen test images were processed. A 20% 
threshold was applied to remove noise from the original 
predictions, and the calibrated precision scores were 
calculated. Figure 4 illustrates the effect of this post-
processing.

Figure 5 presents the maximum, minimum, and 
average precision scores of the 8 test images and their 
distributions, both before and after noise removal. It 
can be observed that Mask R-CNN_L showed the most 
improvement after noise removal, with its mean precision 
increasing from 0.55 to 0.58 and enhanced consistency. 
nnU-Net_S had initially the highest mean precision at 0.81 
before noise removal but experienced a slight decline to 

Before noise-removal.

After noise-removal.

Fig. 4: Example of predicted masks from Mask R-CNN and nnU-Net, 
before and after noise-removal with 20 percent threshold applied.

Fig. 5: Comparison of segmentation results before and 
after noise-removal.

0.76 afterward, along with increased variability. nnU-
Net_L had a minimal drop in mean precision from 0.64 
to 0.63 but improved its maximum precision to 0.94. 
Mask R-CNN_S exhibited marginal improvement, with its 
mean precision increasing slightly from 0.28 to 0.30, but 
remained the weakest model.

Before noise removal, nnU-Net_S exhibited the highest 
mean precision and most consistent performance, with 
nnU-Net_L also performing well but showing slightly 
more variability. Mask R-CNN_L showed moderate 
performance, while Mask R-CNN_S struggled with low 
precision scores, making it the weakest model at this stage. 
After applying noise removal, the effects varied across 
the models, where Mask R-CNN_L benefited the most, 
with increases in both mean precision and consistency, 
indicating that noise removal significantly reduced 
variability and improved performance. In contrast, Mask 
R-CNN_S experienced only marginal gains, suggesting 
limited benefit from this process. Interestingly, nnU-
Net_L had a slight drop in mean precision but improved 
in top-end performance, while nnU-Net_S, previously 
the top performer, saw a minor decline in mean precision 
and increased variability, particularly in lower-performing 
predictions. This suggests that noise removal introduced 
more inconsistency in the nnU-Net models.

Overall, Mask R-CNN_L benefited most from the noise 
removal, which could be introduced into the evaluation 
pipeline to boost model performance. For the nnU-Net 
models, however, noise removal had a negative effect 
and is thus not recommended.
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4 CONCLUSION

The comparative analysis of nnU-Net and Mask R-CNN 
models for detecting flow lines in ceramic shell images 
reveals distinct performance characteristics of each 
model suited to specific application requirements. The 
key findings are summarized as follows:

• nnU-Net_S Model: Exhibited superior precision and 
boundary accuracy, making it the ideal choice in 
scenarios where minimizing false positives is critical.

• Mask R-CNN_L Model: Demonstrated higher recall, 
successfully identifying more defects, but with an 
increase in false positives. This makes it suitable in 
cases where avoiding missed defects is a priority.

• Impact of Dataset Size: Mask R-CNN showed 
significant improvements with a larger dataset, 
leading to better generalization and fewer false 
positives. In contrast, nnU-Net’s performance 
plateaued and even slightly declined with increased 
data size.

• Post-processing Effects: Noise removal post-
processing improved the performance of Mask 
R-CNN_L but had a detrimental effect on nnU-Net 
models.

These findings demonstrate the importance of selecting 
appropriate models and post-processing strategies 
based on specific operational requirements. Despite 
these differences, the study successfully verified the 
feasibility of both algorithms for detecting flow lines in 
ceramic shells.

5 FUTURE WORK

Future work will focus on further improving the 
performance of the models. For nnU-Net, this could 
involve optimizing its ability to leverage larger datasets, 
potentially through further data augmentation techniques 
or architectural modifications to prevent the decline in 
performance observed with increased data. Additionally, 
exploring alternative post-processing methods 
specifically tailored for nnU-Net may help mitigate the 
negative effects seen with the noise removal.

For Mask R-CNN, strategies to enhance precision without 
sacrificing recall, such as employing more sophisticated 
loss functions or adjusting class weight balancing, could 
further reduce the false positives.

Furthermore, automating the data acquisition process 
for ceramic shells by implementing a automated camera 

system, rather than relying on manual photo capture, 
could significantly streamline the automated quality 
control process for ceramic shells and accelerate the data 
acquisition process, which enables further expansion of 
the model’s capabilities on detecting multiple defects. 
Implementing further shell defects into the system is also 
planned.
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Abstract. The effects of unexpected global events, such 
as the COVID-19 pandemic, the Russian-Ukrainian war 
and the energy crisis, on industrial production processes 
are immanent and demand a transformation of behavior. 
In industrial development, the change from Industry 
4.0 to a new stage is taking place. The transformation 
known as Industry 5.0 emphasizes close collaboration 
between humans and machines and pursues a human-
centric, sustainable and resilient approach. The focus is 
on the concept of Humanity-Centered Production (HCP), 
which takes into account not only individual human 
needs, but also the entire ecosystem and long-term 
effects. In contrast to the human-centered approach, 
HCP expands the focus to the whole of humanity and the 
environment. The principles of HCP include a systemic 
view of production systems, a longterm perspective and 
community involvement. HCP also aims to achieve five 
of the 17 UN Sustainable Development Goals, particularly 
in the areas of education, decent work, responsible 
consumption and innovation. The integration of 
cognitive, ergonomic and social aspects into production 
systems is intended to promote the competitiveness and 
sustainability of future production landscapes.

 
Keywords: Humanity-centered Production; Digital 
Transformation; Sustainable Ecosystem.

1 INTRODUCTION

Unexpected events have challenged production 
processes in recent years, such as the COVID-19 
pandemic, the Russian-Ukrainian war and the energy 
crisis. In addition to the social impact, these events 
have also disrupted the traditional industrial production 
system [1]. Industry 4.0 requires adaptability to changing 
conditions. The digital and sustainable transformation is 
leading to a new approach: Industry 5.0. This new phase 
emphasizes greater collaboration between humans and 
machines and takes a more coordinated approach than 
Industry 4.0. With a human-centric strategy, Industry 
5.0 aims for greater sustainability and resilience [3, 
4]. While Industry 4.0 focuses on networking through 
cyber-physical systems, Industry 5.0 emphasizes the 
relationship between humans and machines (see Fig. 1).

In Industry 5.0, where complex industrial processes 
are susceptible to disruption due to the use of modern 
technologies such as AI, big data analytics and IoT, 
resilience is essential. The term goes beyond simply 
enduring difficulties and also emphasizes increased 
performance and flexibility in the face of setbacks. 
The need for resilience has been highlighted by the 
unexpected events described, which implies that 
organizations must develop systems that can withstand 
disruption and recover quickly. Resilience is mainly 
attributed to flexibility and inherent redundancy that 
enable systems to overcome disruptions or failures.

Fig. 1: The path to Industry 5.0 [3]
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To prevent and successfully respond to disruptions in 
the Industry 5.0 scenario, organizations must proactively 
strengthen their resilience through techniques such as 
modular production systems, flexible manufacturing 
facilities and risk management procedures, including 
cybersecurity measures as well as social interactions 
to consider the workforce and society. The emphasis 
on resilience and sustainability is not just a buzzword in 
Industry 5.0, but a key design principle. The awareness 
of the essential role that people play in this technological 
environment is what characterizes Industry 5.0. A special 
synergy is created when people and machines work 
together. Humans are adaptable, can solve problems and 
make subtle decisions. This human-machine collaboration 
promotes sustainable operations by reducing the need 
for ongoing maintenance and ensuring consistent 
production. Because human workers can quickly adapt 
to changing circumstances and deal with unforeseen 
problems, Industry 5.0 places a strong emphasis on the 
human element as a means of developing resilience. 
In Industry 5.0, a holistic strategy that utilizes the 
capabilities of humans and robots proves essential to 
achieving sustainability and resilience [9].

This new paradigm shift favors less technology through 
the use of social con-tent. It will increase productivity as 
part of a global concept known as Humanity-Centered 
Production (HCP).

2 DIFFERENTIATION OF TERMS

How does the term „humanity-centered“ differ from „human-
centered“? Don‘t the terms „human“ and „humanity“ have 
similar meanings?

The meaning of these terms cannot be derived solely 
from the words them-selves; the context must be 
taken into account. The first use of the term „human-
centered“ appeared in the early 1980s and at that time 
focused primarily on the individual person, for whom the 
optimization of production processes was intended [8].

This approach has many merits and is still the prevailing 
paradigm today. Three decades later, however, we 
have developed a heightened sensitivity to bias against 
social groups and are increasingly concerned about 
the impact that humans have on the environment. The 
term „Humanity-Centered“ emphasizes the rights of all 
humanity and addresses the entire ecosystem (the term 
ecosystem encompasses all living things and the Earth‘s 
environment).

The HCP focuses on the question of how production 
systems can be tailored to people‘s needs, skills and 

experiences. This also includes the question of what 
social participation could look like in new working 
environments. It is also about how people can be actively 
involved in production processes through new concepts 
and supported by technical and data-driven tools.

3 BASIC APPROACH

„If we produce for humanity, we must not stop at the 
individual. We must consider our entire global environment in 
a sustainable way: all living beings, the quality of soil, water 
and air. The loss of species. The changes in the climate. We are 
an integral part of the ‚earth‘ system, where changes in one 
component can affect all other components.“

The HCP embraces the fundamentals of current holistic, 
lean production strategies and technological capabilities, 
but expands them to explicitly consider all living things, 
the ecosystem and the long-term impacts in the future.

In the dynamically developing field of technology, people‘s 
tendency to accept technological advances is not solely 
motivated by the benefits they offer [7, 2]. Acceptance 
is often determined by social use and therefore implies 
looking beyond the limits of use. Technology must be 
used under the conditions of the general public without 
harming it.

Fig. 2: Humanity-centered production approach

Based on Norman [5], five principles for dealing with 
industrial processes are defined:

1. Tackle problems at the root, not just the current 
problem (which is often a symptom rather than a 
cause).

2. Focus on the entire ecosystem of humans, all living 
beings and the physical environment.

3. Take a long-term, systemic perspective, 
recognizing that most complications arise from the 
interdependencies of different parts and that many 
of the most damaging effects on society and the 

Papers | AI4EA



  113GFaI-TAGUNGSBAND 2024

eco-structure only become apparent years or even 
decades later.

4. Continuously evaluate the use of technologies and 
organizational practices to ensure that they truly 
meet the needs of the people for whom they are 
intended.

5. Plan together with the community and support the 
needs of the community as much as possible.

Taking these five principles into account, collaboration in 
the production environment and an understanding of the 
use of high technologies such as artificial intelligence will 
lead to a better culture [6]. With clear, culturally anchored 
application, this will also lead to greater motivation in the 
working environment, which in turn is expected to lead to 
higher productivity.

Implementing the HCP approach fundamentally addresses 
5 of the 17 United Nations Sustainable Development 
Goals (SDGs):

• Quality education (4) - Through partnerships 
with educational institutions, the aim is to transfer 
knowledge and train the next generation of 
professionals, which contributes to the promotion of 
high-quality education.

• Decent work and economic growth (8) - By creating 
a working environment that promotes innovation and 
efficiency, the vision contributes to the creation of 
decent work and economic growth.

• Industry, innovation and infrastructure (9) - The 
vision aims to research and develop innovative 
technologies and production infrastructures to 
strengthen the industry and increase efficiency.

• Responsible consumption and production (12) - The 
vision aims to optimize production processes through 
the use of resource-efficient technologies and the 
promotion of ecological and social sustainability.

• Partnerships for the goals (17) - The cooperation 
with industrial companies and educational 
institutions shows that we are committed to working 
in partnership to jointly achieve the Sustainable 
Development Goals.

4 IMPLICATION

Based on the principles and their relevance to sustainability 
goals, the transformation process in industry will make 
the automation of production processes increasingly 
urgent, particularly in light of demographic change. In 
addition, from an ecological perspective, manufacturing 
companies worldwide are increasingly dependent on the 
collection of energy data and its processing in efficient 
process chains in order to meet the challenges of future 
value creation networks. Digitalization is an important 
key to sustainability, resilience, flexibility and long-term 
prosperity. However, the digital penetration of many 
production areas is only taking place with a delay. The 
introduction of digital technologies depends not only 
on the technical and economic added value or their 
organizational implementation, but also on whether this 
added value is perceived and accepted.

Adoption of digital technologies and actual usage 
behavior is based on the perceived usefulness in 
combination with the perceived ease of use. Depending 
on value profiles and the purpose in the context of the 
social task, the productive factors must be adapted to 
the respective circumstances and constantly scrutinized.

Optimizing the interaction between man and machine 
is therefore more urgent than ever in order to advance 
the development of dynamic socio-cyber-physical 
production systems in harmony with the respective 
cultural framework conditions. Until now, digital 
production processes have only mapped the data-
technical connection of the means of production to virtual 
representations through data models in the context of 
the duality of virtual (cyber) and physical production 
systems. In future, a socio-technical component will be 
added to these cyber-physical production systems in 
order to support the people using them. The integration 
of socio-cognitive aspects in automation processes 
must therefore be taken into account in the context of 
product development, factory planning, entrepreneurship 
and innovation management in order to shape the future 
together responsibly.

5 CONCLUSION AND OUTLOOK

Over the past decade, advances in technology and in the 
organizational structures of production systems have led 
to profound changes. These changes have led to a human-
centered approach that emphasizes the importance of 
human factors in the design and operation of production 
systems. Future production landscapes as well as the 
competitiveness of companies and societal frameworks 
will require continuous adaptation to dynamic changes. 
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It is crucial to develop a comprehensive understanding of 
the diverse impacts of our activities.

Humanity-Centered Production (HCP) provides a 
strategic framework in this context and offers guidelines 
that will have a significant impact on global practice. By 
integrating ergonomic, cognitive and social considerations 
into production processes, human-centered production 
aims to improve productivity, safety and overall well-
being, thereby promoting sustainable and competitive 
production environments.
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Abstract. Continuous Integration (CI) is an important 
concept in modern software development to maintain 
a high quality in projects with increasing complexity 
yet decreasing time for development cycles. It uses 
a continuous and automated test of the software on a 
daily basis. An important challenge in CI processes is an 
optimal selection of test cases with high potential to find 
faults in the software given the changes in the respective 
CI cycle. This selection is needed since typically not all 
test cases can be executed in each cycle because of 
limited time and hardware resources. Reinforcement 
Learning (RL) is a method in Artificial Intelligence (AI) 
where an agent learns by interaction with a system. It is 
well suited to cope with dynamic environments like a CI 
process.

This article describes an implementation of a tabular RL 
agent to perform an optimal selection of test cases in a 
CI process. A real CI process was analysed within the 
scope of these studies, resulting in a rule tree to improve 
process. The RL agent is tested in a dynamical simulation 
of a real CI process. The RL agent shows a better 
performance compared to a random selection. A model-
dependent RL approach shows the best performance in 
a reasonable number of CI cycles as needed for a future 
application in a real CI process.

Keywords: Continuous Integration Process, 
Reinforcement Learning, Test Case Selection.

1 INTRODUCTION

Continuous Integration (CI) is a concept in software 
development processes that gained importance over 
the last years to maintain high quality standards for 
software in an environment with increasing complexity 
and decreasing time of software development cycles. 
The goal of a CI process is to find faults in the software 
early during the development to save additional costs 
and time that would be needed to fix these faults at a 
later stage. A build of the current state of the software is 
created and tested daily. With this build it is possible to 
run automated tests on all test stages such as component 
tests in software, integration tests and system tests on 
hardware (hardware in the loop), which need special 
test environments. This process allows finding potential 
faults that can only be observed in a complete build of 
the software because they rely on an interplay of the 
different components of the software.

High quality standards demand for a high number of test 
cases that need to be created and maintained. A main 
challenge of CI is to select a set of test cases with a high 
potential to find possible faults given the changes in the 
software in a specific development cycle. The necessity 
of a selection process is derived from the inherent 
limitations of time and hardware resources, which 
preclude the possibility of running all test cases in each 
cycle. The selection of test cases is a complex task that 
is usually done by experienced software testers.

This article describes the development of an AI agent 
using Reinforcement Learning to perform the task of test 
selection that is usually done by humans. Reinforcement 
Learning is a special concept of machine learning in which 
the AI agent learns by interaction with its environment. 
This makes RL well suited for dynamic and changing 
systems.
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Previous applications of an RL agent in a CI process 
have been studied in references [1,2]. In the referenced 
studies, the RL agent is trained and tested with static 
historical data. The studies presented in this article aim 
to go one step further and to train and apply such an RL 
agent in a dynamic CI environment.

Within the scope of these studies, a real CI process at 
KOSTAL Industrie Elektrik GmbH & Co. KG and Compleo 
Charging Solutions GmbH & Co. KG has been examined in 
Section 3 resulting in a rule tree to improve the process.

The tabular agent used in this article is described in 
Section 4. It uses a model-dependent approach to get 
early estimates for states previously unknown to the 
agent and to obtain a good performance within a reason-
able number of cycles. The agent is tested in Section 5 
in a dynamic simulation of a real CI process. The average 
reward represented by the average number of failing test 
cases selected by the agent is compared to a random 
selection of testcases as a function of learning steps or 
simulated CI cycles.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

Reinforcement learning is an interdisciplinary area of 
machine learning and optimal control, concerned with 
how an intelligent agent should take actions in a dynamic 
environment in order to maximize a reward signal 
[4]. Central to this – as usual in AI – is the agent. The 
environment is typically stated in the form of a Markov 
decision process (MDP), as many reinforcement learning 
algorithms use Dynamic Programming (DP) techniques 
[5]. Fig. 2 shows the interaction between agent and en-
vironment in RL.

Fig. 1: Schematic representation of a model-based Reinforcement 
Learning process.

In each step the agent passes into a new state s, for 
which it receives a reward 𝑟 from the environment, 
whereupon it decides on a new action 𝑎 from the 
admissible action set A(s) for s, by which in most cases 
it learns, and the environment responds in turn to this 

action. We differentiate between episodic tasks, which 
come to an end, and continuing tasks without any end 
state. The goal of the agent is to select the action in each 
state so as to maximize the sum of rewards over all future 
interactions. The selection of the actions by the agent is 
referred to as its policy π, and that policy which results 
in maximizing the sum of all rewards is referred to as 
the optimal policy π*. In model-free RL algorithms, it is 
assumed that an agent neither has any prior knowledge 
of the environment, nor attempts to learn the environment 
dynamics. In model-based RL-algorithms [6], the agent 
uses a model of the environment, either known a priori 
or learned by the agent from the environment dynamics, 
see Fig. 2. Using this environment model, the agent 
learns through simulation of the environment (planning). 
The advantage of model-based RL over model-free RL is 
that it requires less real interaction steps to learn a stable 
policy. The disadvantage is the additional bias from the 
environment model, that can lead to systematic errors. 
Both, model-free and model-based RL approaches can 
be combined.

The state and actions spaces can consist of continuous or 
discrete attributes. In our work, we model the RL problem 
as continuing task over dis-crete state and action spaces 
using a model-based approach.

2.2 RELATED WORK

Over recent years, different RL approaches for test case 
prioritization of the CI process have been proposed. 
Spieker et al. prioritize test cases based on execution time 
and previous execution and failure history [1]. They use a 
pointwise ranking model and Q learning as RL algorithm. 
Bagherzadeh et al. extended the approach by including 
code-based features into the states, additional listwise 
and pairwise ranking, and different RL learning methods 
[2]. Bertolino et. al. included other machine learning 
methods and compared them with the RL approaches 
[3].

However, all these approaches are based on simulations 
of historic datasets. This means failure rates are 
independent of their previous executions, dynamically 
selected by the agent. In this work, we will address this 
shortcoming by introducing an environment model, where 
failure rates depend on previous test case executions.

3 IMPROVEMENTS FOR A CONTINUOUS 
INTEGRATION PROCESS

Within the scope of the studies presented in this paper, 
case studies of CI processes from the development 
projects of KOSTAL Industrie Elektrik GmbH & Co. 
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Fig. 3: Rule tree developed for the optimization of a specific CI process

KG and Compleo Charging Solutions GmbH & Co. KG 
have been examined. The Open Charge Point Protocol 
(OCPP) is an open communication protocol developed 
for the interaction between charging stations for electric 
vehicles and a central management system. In the OCPP 
case study, the results of the specification tests of the 
OCPP client integrated in the CI system were examined.

The automatic scheduling in the CI system triggers a 
pipeline execution for all existing branches when changes 
are made in the source code management (SCM) system. 
The results were archived during the research project.

The archived results have been analyzed and it was 
found that the relation between failed tests and changes 
in the software is ambiguous, since the CI process was 
often executed over several commits. In order to obtain 
more data for the research project, a tool was developed 
in Python that simulates the CI process and executes the 
OCPP tests for each individual commit. 
The obtained data was analyzed 
manually, resulting in a rule tree shown 
in Fig. 3.

The rule tree uses a pattern consisting 
of a trigger source, trigger and trigger 
event. The trigger source acts as a 
trigger for the database and essentially 
includes changes in the source code 
and the content of the commit message. 
The trigger describes the condition that 
must be met at the trigger source. A 
successful trigger results in a trigger 
event, i.e. the follow-up action.

The data was first sorted according to 
the respective trigger sources. It was 
further checked which events (triggers) 
could have a direct influence on the 
tests (trigger event) and finally, possible 
rules for test selection were defined.

Based on the experience of the project 
participants, there were already general 
assumptions about rules that could be 
confirmed. These were also taken into 
account in the diagram. For example, 
it was expected that a code change 
in a test would lead to changed test 
conditions and thus this test would have 
to be considered in any case.

In addition, a lot of new insights could 
be gained from the commit messages. 

The information contained, such as action words (e.g. 
removed, documented), branch names, requirements 
markers and buzz words (e.g. TMP, WIP, Todo), provides 
a crucial indication of possible effects (trigger events), 
which can be used to adjust the test selection.

It is also important not only to examine the content, but 
also to take the meta-information into account. If the 
commit is not written by the module owner, the probability 
of errors in the tests increases and a broader contextual 
view must be taken when selecting tests.

The buzzwords can be used to restrict the test selection, 
as this clearly describes the change. For example, it 
makes no sense to run the tests if the commit is labelled 
WIP (work in progress) and the change is therefore not 
yet complete.
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4 BUILDING AN RL-AGENT

There exists a large number of RL methods in order to 
determine the optimal policy π*. They are mostly rooted 
in DP. In the current work, we focus on Q-learning. Like 
many RL methods it calculates an action-value function 
𝑄:𝑆 ×𝐴→ℜ which for each pair of state and actions assigns 
the expected sum of future rewards, the expected return.

The core of the Q-learning algorithm is a Bellman 
equation from DP as a simple value iteration update, 
using the weighted average of the current Q value and 
the quadruple (𝑠𝑡,𝑎𝑡,𝑟𝑡+1,𝑠𝑡+1) from the new time step 𝑡. 
Based on the action-value function, a corresponding 
policy can be calculated.

4.1 TABULAR AGENT

For discrete state and actions spaces of sufficiently 
low dimensions, the state-action function 𝘘 can be 
directly stored as a table. This is the simplest type of 
representations of 𝘘 and does not 
require function approximations 
techniques. The resulting agent 
is called tabular agent. We use 
𝘘-learning with a tabular agent.

4.2 AGENTS ENVIRONMENT 
MODEL

To expedite the agent‘s learning 
process, we employ a model-based 
approach. This entails informing 
the agent of the existence of 
relationships between processed 
features and test failures. As a result, 
the agent is able to construct a histogram of failed tests 
from a given run and previously processed features from 
the sprint. This enables the agent to utilize this data 
when it is required to act in previously unobserved states.

5 EXPERIMENTS

Based on the experience gained from numerous projects, 
a simulation environment was developed with which 
the various hyperparameters of the agent, as well as an 
optimal reward and the action and state spaces, could 
be developed. This was done in order to facilitate the 
investigation of the aforementioned parameters.

5.1 ENVIRONMENT SIMULATION

Based on careful studies of the behaviour of the CI 
process (Section 3), we designed an environment to 
simulate the failure rates of test cases in each new CI 

run based on previous executions and properties of the 
test cases.

DATA MODEL

As shown in Fig. 4 in a development process, various 
features or functionalities are implemented and modified 
in development cycles, which are described here in 
terms of their relevance to safety and assigned a unique 
identifier in the Functionality table of the accompanying 
data model. Concurrently, tests are designed to ascertain 
the correct implementation of the various features within 
the system, see table TestCase. The relationship between 
the evaluated features and test cases is designated as 
Test_Func_Rel, wherein the weight represents the depth of 
the test case utilized for the assessment of the feature. 
Versions are recorded periodically (SW_Version table) and 
the functionalities that have been modified since the last 
version are noted (the Version_Func_Rel table).

Fig. 4: Data model for the simulation of a CI Process

A crucial element of a CI process is that an automatic 
test run is always triggered after versioning (the CSI Run 
table). This executes a subset of test cases (specified 
in the table TC_CSIRun_Rel) and stores the test results (in 
column result of the aforementioned table).

SIMULATION

A typical CI process was modelled dynamically as 
follows. In each simulation step, a new software version 
is created, resulting in a new row in the table SW_Version. 
Additionally, features that have been edited since the 
previous version are selected. This selection is project-
specific and depends on factors such as the average time 
required for developing new functionalities or resolving 
bugs. The subsequent phase is the execution of a CI test 
run. To this end, the agent will select a number of test 
cases to be run on a test engine. The result of each test 
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Fig. 5: Average reward as a function of the training steps for an RL agent 
with environment model (yellow), an RL agent without model (green) 
and a random test case selection (blue) in simulated CI processes with 
10 test cases and 8 functionalities (left) and with 25 test cases and 20 
functionalities (right).

Fig. 6: Test case to functionality relation used in the simulation (left) and 
learned by the environment model in the agent (right).

run will be modelled stochastically. It is more likely that a 
test case associated with a feature that was processed in 
the previous sprint will fail. Similarly, if a test case failed 
in the previous CI test run and no bug fixing has taken 
place, it is more likely to fail again.

STATE, ACTION, REWARD

In order to select appropriate test cases for the CI run, 
the agent requires information regarding the system‘s 
current state. In this simulation, the failed test cases from 
the previous run and the features that were processed in 
the last sprint are utilized to define the state. The agent 
selects a subset of test cases to be executed in the next 
CI run, which defines the agent‘s action. As a reward, the 
number of previously selected test cases that have failed 
is received.

6 RESULTS

The RL agent is applied to the simulated environment 
described above. Figure 5 shows the average reward 
for the dynamic test case selection using the RL agent 
with the environment model in yellow compared to a RL 
agent without the environment model in green and a 
random selection of test cases in blue. The training of the 
agents runs through 5000 steps. The reward represents 
the number of failing test cases found by the respective 
agent or by the random selection. A higher reward is 
therefore equal to a better performance of the agent.

The left figure shows the average reward in a simulation 
with 10 test cases and 8 functionalities. Up to three 
functionalities can be modified in each cycle. A better 
performance is observed for both agents compared to 
the random selection after about 1000 steps. We observe 
a better performance for the agent with the environment 
model. Especially in the first few hundred steps the 
model provides an estimate for previously unknown steps 
leading to a better performance in the early cycles. This 
is even more important in a more complex simulation with 
25 test cases for 20 functionalities shown in the right 
figure. The average reward does not improve significantly 
in the first 5000 cycles using the agent without the 
environment model. Using the model-dependent 
approach however, leads to a better performance in 
a reasonable number of cycles.

The plots shown in Fig. 5 are just one example. The 
statistical nature of the problem leads to differences 
between different runs, especially for the model-
dependent approach in the first cycles. The model in 
the agent is randomly initialized. A better performance 
of the model-dependent approach at the end of 
the run was observed in multiple studied examples.  

The better performance with the environment model is 
important for a possible future application in a real CI 
process because in a real application you can usually 
not afford to be ineffective for a few hundred cycles. In a 
process with daily cycles, this would mean ineffectiveness 
for the first years. The environment model in the agent 
could further be initialized with information from a test 
management tool or from historical data to get an even 
better and more stable performance in the early cycles.

steps/100

steps/100
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Fig. 6 shows the relation between test cases and 
functionalities used in the simulation of the CI process 
on the left. Test cases are related to functionalities by 
weights ranging from 0 to 3. The higher the weighting, 
the deeper the functionality is tested by the test case 
and the higher the probability that it will fail, if the 
functionality is changed. The figure on the right shows 
the test case to functionality relation in the environment 
model of the agent. This relation is constantly updated. 
The reason for the stripe structure in this figure is that 
several functionalities can be modified in the same cycle, 
resulting in ambiguities relating the functionalities to the 
test cases. Therefore, stripes are visible for the dominant 
failing test cases. This can be avoided by updating the 
model only in states where one functionality is modified 
and no testcases have failed in the previous run. The 
resulting model is shown in Fig. 7. This, however, leads 
to a slower learning process because less events are 
selected to update the model. It could be beneficial to 
use this variant in case of an initialization by historical 
data, but this would be part of future work.

Fig. 7: Test case to functionality relation learned by the environment 
model in the agent. The model is only updated in cycles with only one 
modified functionality and no failing test cases.

7 CONCLUSION

A successful application of an RL agent for a test case 
selection in a simulated CI process has been shown. The 
RL agent was studied with and without an environment 
model used to obtain an estimate of the optimal 
selection in states previously unknown to the agent. 
Its performance is compared to a random test case 
selection. A better performance is observed for both RL 
agents compared to the random selection in a simulated 
process. The model-dependent approach shows a much 
better performance, especially in the first cycles of the CI 
process. This advantage in the performance grows with 

increasing complexity of the process (more test cases 
and functionalities). The model-dependent approach is 
interesting for an application in a real CI process, where 
it is important to reach a reasonable performance in a 
limited number of cycles. It also allows to include prior 
knowledge into the agent by a respective initialization of 
the environment model. Additionally, improvements of 
an existing CI process have been studied resulting in a 
rule tree in Fig. 3. In a next step, the tabular action-value 
function should be replaced by function approximation.
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Abstract. The industrial internet of things offers a 
transformative opportunity to revolutionize manufacturing 
through real-time monitoring and predictive mainte-
nance. However, the high costs of traditional 
measurement equipment have limited its adoption, 
especially in resource-constrained environments. This 
paper presents a smart sensor system based on the 
ESP32 microcontroller, designed to make industrial 
internet of things applications accessible to small and 
medium-sized enterprises. The system includes multiple 
sensor nodes deployed across various machines, 
transmitting data to a hub gateway device powered 
by a Raspberry Pi. To enhance functionality, specific 
libraries for the low-cost sensors were developed and 
power-efficient features were implemented, including 
a sleep mode to extend battery life. The collected 
data is analyzed using artificial intelligence models for 
regression, clustering, classification, and forecasting, 
providing valuable insights into machine behavior. This 
enables predictive maintenance, quality monitoring, wear 
detection, and total tool life analysis, ultimately leading to 
improved productivity, reduced downtime, and increased 
overall efficiency. By leveraging low-cost sensors and 
optimizing their performance, the proposed system 
offers a cost-effective and efficient solution for Industry 
4.0 applications.

Keywords: Artificial Intelligence, Industrial Internet 
of Things, Industry 4.0, Predictive Maintenance, Sensor 
Nodes.

1 SCIENTIFIC BACKGROUND AND MOTIVATION

The high costs of traditional measurement equipment 
has been a major barrier to the widespread adoption 
of advanced sensors with software agents in the field 
of industrial internet of things (IIoT), particularly for 
small and medium-sized enterprises (SME) in resource-
constrained environments. Previous studies, such as the 
work by Rossi et al. have demonstrated the potential 
of low-cost micro-electromechanical systems (MEMS) 
accelerometers for vibration monitoring in rotating 
structures, providing a reliable and cost-effective 
alternative to traditional optical systems [1].

Building on this foundation, this paper proposes a 
smart sensor system that leverages low-cost sensors 
and advanced data analytics to provide an affordable 
yet effective solution for IIoT applications. The system 
is based on the ESP32 microcontroller, known for its 
versatility and cost-effectiveness. By deploying multiple 
sensor nodes across various machines and transmitting 
data to a central hub powered by a Raspberry Pi, a 
comprehensive monitoring network was created. The 
integration of artificial intelligence (AI) models for data 
analysis further enhances the system‘s capabilities. 
This approach not only reduces reliance on expensive 
equipment but also leverages machine learning (ML) and 
deep learning algorithms to enhance data analysis.

This research extends the application of MEMS 
accelerometers to new domains, specifically adapting the 
experimental setup to a rotating fan and exploring their 
potential for classification and error detection in drilling 
machines. This advancement confirms the versatility of 
MEMS accelerometers and opens new possibilities for 
their use in industrial applications.
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2 MATERIALS AND METHODS

2.1 SENSOR SELECTION PROCESS

The smart sensor system relies on a combination of 
affordable open-source sensors, a microcontroller, a 
Raspberry Pi-based AI hub and AI models to enable 
monitoring, realtime data collection, processing, and 
analysis. The hardware and network configuration play a 
crucial role in ensuring seamless communication between 
the various components and efficient data transmission. 
Table 1 shows a comparison of commercially available 
sensor boards.

ADXL337 ADXL326 LIS3DH ADXL345 ISM330 
DHCX

ADXL335

Manufacturer Sparkfun Adafruit Adafruit Sparkfun Adafruit Sparkfun

Max. data rate 

in Hz

500 550 5,300 3,200 6,660 550

Measuring range 

in m/s²

± 29.42 ± 156.91 ± 19.61 to  

± 156.91

± 19.61 to  

± 156.91

± 19.61 to  

± 156.91

± 29.42

Sensitivity (LSB = 

least significant 

bit)

300 V/g 57 V/g 1-12 mg/LSB 4 mg/LSB 0.06 - 0.47 

mg/LSB

300 V/g

Output analog analog digital digital digital analog

Approx. costs 

in €

17.30 6.90 5.90 24.40 23.75 15.50

Tab. 1: Comparison of six MEMS-based sensor boards.

Fig. 1: A Test stand with two fans 
operating at the same frequency 
and two sensors: a MEMS sensor 
(a) and an IEPE sensor (b) 
mounted on the fan casing with a 
magnet. An intentional imbalance 
was introduced on the left side.

The data collection process in the smart sensor system is 
designed to balance accuracy and power efficiency. Low-
budget sensors are configured for real-time analysis by 
collecting data at specific intervals over a predetermined 
duration. To minimize power consumption, the sensor is 
set to low-power configurations between data collection 
intervals. The objective of the sensor selection process 
was to identify a cost-effective accelerometer sensor 
that meets specific performance criteria. The key metrics 
used in the selection process included precision, data 
rate, sensitivity, reproducibility, and overall usability.

To ensure a standardized comparison, a test setup 
containing two fans was set up (cf. Fig. 1). An intentional 
imbalance was introduced allowing the sensors to capture 
rotational frequencies. Both digital and analog MEMS 
sensors mounted on the fan casing were evaluated in this 
setup, providing a comprehensive basis for comparing 
their performance under identical operating conditions.

Measurements were taken over a 10 s period for each test, 
with simultaneous data collection from both the integrated 
electronics piezo-electric sensor (IEPE), measuring the 
fan‘s casing, and the MEMS sensor, which was linked to 
a Raspberry Pi. The MEMS accelerometer sensor was 
connected to the I2C pins of an ESP32 microcontroller for 
data acquisition, a common protocol supported by all the 
sensors in comparison. To ensure consistency, only the 
corresponding z-axis data from the MEMS sensor was 
compared with the IEPE sensor. The measurement range 
was set to ±19.61 m/s² where possible and the data 
output rate was targeted at approximately 400 Hz which 
is supported by all the sensors to be analyzed, though 
actual rates varied.

The ISM330DHCX sensor was selected based on its 
performance in comparison to the sensors in Table 1, 
especially for its higher output data rates (ODR), making 
it an effective alternative to IEPE sensors operating at 
a sample rate up to 6.7 kHz. A comparison was made 
between the selected ISM330DHCX sensor and the 
industrial piezo vibration sensor 601A02 (sensitivity 554 
mV/g) from PCB connected to a Raspberry Pi with an 
MCC172 IEPE measurement hardware attached on top 
(HAT) to ensure it as a viable substitution (cf. Fig. 2).
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Fig. 2: The signal plots from the ISM330DHCX MEMS sensor (above) and 
the IEPE sensor (below) highlight comparable performance in detecting 
fan anomalies. Although the IEPE sensor provided a slightly cleaner 
signal, the ISM330DHCX was able to capture similar vibration patterns 
with sufficient accuracy. Given the lower costs and ease of integration 
of the ISM330DHCX, it was selected as the preferred sensor for the 
validation experiment, as it offers a cost-effective alternative.

2.2 SENSOR CONFIGURATION

After selecting the ISM330DHCX sensor, it was 
configured to use SPI communication instead of I2C. 
This change was necessary to accommodate the higher 
ODR supported by the sensor and ensure faster data 
transfer. The I2C protocol was only used in the sensor 
selection process with an ODR of 400 Hz to make the 
sensors comparable. To standardize the format of the 
sensor data for transmission, a JSON string template 
was created. This template includes key parameters 
such as metadata and the corresponding sensor data 
for acceleration and gyroscope readings across the 
x, y, and z axes. The ISM330DHCX sensor allows for 
a wide range of ODR from 1.6 Hz to 6,667 Hz. For the 
validation experiment, the sensor was configured to have 
a sampling rate of 6,667 Hz to capture fast changing 
and time sensitive events. A higher ODR contributes 
significantly to improving overall sensing accuracy 
and system responsiveness, as well as being useful 
for calculating frequency domain features with limited 
timeframes for measurement. The ISM330DHCX sensor 
has a dynamic, user-selectable full-scale acceleration 
range allowing flexibility depending on the application‘s 
needs. The choice of range directly affects the sensor‘s 
sensitivity. For the sensor configuration, a range of 

±78.48 m/s² was chosen. Smaller ranges allow a more 
precise detection of subtle accelerations. The signal-
to-noise ratio (SNR) is influenced by this range and the 
system‘s noise bandwidth, with lower noise enabling 
the detection of smaller acceleration values. Therefore, 
careful selection of the range was crucial for balancing 
sensitivity and noise performance.

2.3 SENSOR OPERATION MODES

The ISM330DHCX sensor operates in two modes: 
continuous mode and interval sleep mode. In continuous 
mode, the sensor collects data while connected to a 
power source, primarily for AI training or continuous 
monitoring. The first in - first out buffer (FIFO) is 
employed in both continuous and sleep modes to ensure 
consistent data buffering and an equivalent time interval 
between the samples. For continuous mode, the FIFO is 
configured to provide continuous updates, where older 
data is discarded as new data arrives. The data sample 
collection loop runs while the number of samples is less 
than the data buffer size.

In sleep mode, the ISM330DHCX sensor is set to the 
lowest possible ODR to minimize power consumption 
while the controller is in a deep sleep state. This 
configuration allows for efficient energy usage, 
extending the system‘s operational lifespan when run-
ning on battery. The controller wakes up periodically to 
collect and transmit data, then returns to sleep, enabling 
the sensor to possibly operate for a few months in low-
power mode. For the FIFO buffer, FIFO mode is utilized 
because the measurement duration is small enough to fit 
within one or two full FIFO buffers, enhancing efficiency. 
The FIFO can store up to 9 KB of data with compression 
enabled, and its depth can be resized by setting the WTM 
bits in FIFO_CTRL1 and FIFO_CTRL2. The buffer is cleared 
between readings and no FIFO related triggers are used 
in this application. The loop for data sample collection 
continuously polls the FIFO watermark flag to determine 
if sufficient samples are available for processing. When 
the flag is set, it retrieves the number of samples and 
enters a loop to read data from the FIFO buffer, collecting 
different sample types based on their respective tag. 
The valid data is then buffered as a JSON string for 
transmission to the AI hub. Finally, the system prepares 
to enter sleep mode, efficiently managing power 
consumption. This logical flow enables structured data 
handling and energy-efficient operation.

In the validation experiment, acceleration and gyroscope 
data are collected to test the buffering capabilities for 
multiple sample types. Different parameters, such as 
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temperature, could also be buffered in the FIFO. The 
ISM330DHCX can act as a sensor hub for additional 
sensors, like a power sensor. An example code for 
configuring an external sensor to the hub, specifically the 
LIS2MDL external magnetometer sensor, is referenced in 
the ISM330IS datasheet which also provides an example 
for the sensor hub within the sensor board [2].

2.4 MICROCONTROLLER

The ESP32 serves as the central device for data processing 
and communication between the sensors and the AI hub. 
It buffers the sensor data, adds relevant metadata, and 
manages data communication with the server. To optimize 
power consumption, a dynamic measurement strategy 
was implemented that adjusts 
the required measurement time 
and interval. The microcontroller 
was then configured to operate 
in a low-power mode between 
measurements, allowing it to run 
on a battery for extended periods 
without replacement. Additionally, 
the FIFO buffer was utilized 
within the sensor to ensure con-
sistent data collection rates and 
synchronize the various parameters 
measured (gyro, acceleration, 
temperature), thereby increasing the overall quality of 
the collected data. For the connection, the setupMqtt 
function is responsible for initializing and configuring 
the MQTT client on the ESP32. It sets up timers for 
reconnecting to the MQTT broker and Wi-Fi and defines 
callback functions for various MQTT events. The ESP32 
establishes a Wi-Fi connection with a designated router 
for connecting the smart sensors with the Raspberry Pi. 
Next for buffering, the sensor setup is initialized with 
the configurations specified in the sensor section. A 
crucial part of this initialization is allocating space on the 
external PSRAM of the ESP32 to buffer the samples. This 
buffering mechanism is essential for ensuring smooth 
data acquisition and processing. By utilizing the external 
PSRAM, the ESP32 can temporarily store a larger number 
of samples, allowing for more efficient data handling and 
transmission. This approach helps prevent data loss and 
enables the microcontroller to manage high-frequency 
sampling rates effectively.

In the main loop, the ESP32 continuously checks 
the number of samples in the FIFO. If the number of 
samples exceeds the threshold, it reads the data from 
the ISM330DHCX sensor and publishes the data to 
the MQTT topic. The ESP32 enters deep sleep mode 

after transmitting the data. During this time, power 
consumption is significantly reduced, allowing the 
device to run on battery power for extended periods. 
The power consumption of the ESP32 in deep-sleep and 
active modes is critical. In deep-sleep mode, the ESP32 
consumes approximately 10 μA, while Wi-Fi transmission 
in active mode draws 240 mA. To evaluate the impact 
of different active durations on battery life, a scenario is 
considered where the ESP32 sleeps for one hour and then 
transmits data over Wi-Fi for varying durations. Table 2 
shows the average current consumption and estimated 
battery life using a 1,000 mAh LiPo battery. As active time 
increases, overall power consumption rises significantly, 
reducing battery longevity.

Sleep time 
(per cycle)

Active time 
(per cycle)

ESP32 
average 
current 

consumption 
(in mA)

ISM330DHCX  
average current 

consumption  
(in mA)

Total average 
current 

consumption 
(in mA)

Estimated battery life  
(1000 mAh LiPo)

1 h 1 s 0.077 0.006 0.083 ~12,112.34 h (~504.68 days)

1 h 10 s 0.675 0.010 0.684 ~1,461.07 h (~60.88 days)

1 h 1 min 3.944 0.03 3.974 ~251.62 h (~10.48 days)

10 min 1 s 0.409 0.008 0.417 ~2,396.33 h (~99.85 days)

10 min 10 s 3.944 0.03 3.974 ~251.62 h (~10.48 days)

10 min 1 min 21.827 0.141 21.968 ~45.52 h (~1.90 days)

Tab. 2: Estimated battery life with different settings of measurement 
intervals.

When the wake-up timer triggers, the ESP32 wakes up, 
performs the data collection and transmission tasks, and 
then returns to deep sleep mode. This cycle repeats. 
The configuration of the ESP32 was challenging due to 
the need to extend library functionalities. Functions that 
access all the FIFO registers were necessary to get the 
status of the FIFO and check registers. To dynamically 
allocate memory on the PSRAM, a debug file was 
included. This involved significant efforts in extending 
the library functionalities to support the specific 
requirements of the project. This setup ensures that the 
ESP32 can handle high-frequency data sampling and 
efficient data transmission using MQTT. The board_build.
psram option in the Platform IO project configuration 
enables the use of external PSRAM, which is crucial for 
buffering large amounts of data. The build_flags include 
necessary configurations to fix known issues with the 
ESP32 PSRAM cache and to enable dynamic memory 
allocation using PSRAM.
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Fig. 3: The data flow of the smart sensor system, showcasing how raw 
sensor data is processed, analyzed, and visualized in real-time.

2.5 AI HUB

The sensor hub, built with a Raspberry Pi, collects data via 
Wi-Fi from multiple sources and processes it. To improve 
data handling, an asynchronous MQTT server manages 
client connections, allowing multiple communications 
at once. Each smart sensor sends its data (3-axis 
acceleration, 3-axis gyro data, optional temperature 
readings) to the hub. The hub then formats this data for 
analysis.

The server script assigns the data to the correct sensor 
topic and processes it further. The MQTT protocol 
facilitates data exchange between the sensors and the 
hub. The data pipeline extracts features and analyzes the 
data using AI models, acting as an inference server that 
turns sensor signals into AI predictions.

A diagram of the data flow is shown in Fig. 3. The server‘s 
backend runs on Python. For feature extraction, the 
TSFEL library and SciPy are used to efficiently extract 
relevant features from the data. For ML, PyCaret is used 
for initial data analysis, and XGBoost is the standard 
classification model.

The AI model‘s classifications are published as MQTT 
messages on a dedicated topic and displayed on a 
user interface created with NodeRed. This open-source 
software is popular in the Internet of Things (IoT) field 
and allows programming of data flow and linking signals 
with display or control elements. The interface is 
accessible via a web browser on any device within the 
same network, including mobile devices.

During initial testing in live detection mode, it was 
observed that, from data acquisition to feature extraction, 
processing in an AI model, transmission, and display on 
the graphical user interface, it takes on average less than 
1 s processing time. This enables live monitoring, but 
the main application focuses on long-term monitoring, 
which is why the sleep function with battery operation 
is considered a crucial component of the smart sensor 
setup. The server can be operated in two modes: initially, 
a pure data acquisition mode is available, where incoming 
data is only collected and assigned to recognized classes. 
This data acquisition part serves to create a dataset 
with which the AI model will be trained. If an AI model 
is present, the inference operation mode is switched on, 
and incoming data is immediately further processed in 
the data pipeline, and the result of the classification is 
displayed. For the first version of the server, each sensor 
is treated as its own data collector and incoming data 
is individually processed and evaluated. Preparations 
have been made on the server side to enable data 
combinations, such as sensor fusion, where data from 
two sensors are combined to process as if it were a single 
sensor with 12 axes, or as axis extension, where the axes 
of multiple sensors located at different positions on the 
subject are considered together, allowing, e.g., three 
sensors to extract one axis each and combine it into a 
3-axis dataset.

2.6 AI

To develop an effective predictive maintenance system, 
a standard model is provided with the XGBoost algorithm 
and additionally an automated ML framework (AutoML), 
that gives access to a multitude of industry standard 
algorithms, has been used. The AutoML mode trains 
multiple AI models and selects the most suitable based 
on performance-accuracy trade-offs. The level of 
accuracy required depends on the specific application 
and the quantity and quality of the collected data. An 
automated training process is used to compare various 
ML algorithms and select the best-fitted one. The model 
trains in the frameworks Pycaret for ML and Pytorch for 
deep learning. This approach enables the optimization of 
the model accuracy while minimizing required computa-
tional complexity after deployment. The automated ML 
process is intended for more complex classification or 
regression problems where the provided standard model 
does not achieve sufficient accuracy. The collected 
dataset is sent to a model-training server, which can be 
constantly optimized to provide updates to the automated 
model training process without the need to run updates 
on the edge devices. The standard model running the 
XGBoost algorithm can be trained on the edge device, 
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the AI hub, itself and therefore provides a complete 
offline alternative. The standard model has been shown 
to be sufficient in most standard maintenance tasks such 
as fault and machine state detection and estimating 
the remaining useful life (RUL) of tools. In the standard 
configuration, 19 features from the vibration analysis 
range are calculated for each axis, providing a total of 
114 features for each collected sample. Features are 
extracted from both the time and frequency domains to 
capture the underlying characteristics of the data input. 
Time-domain features include statistical metrics such 
as the minimum, maximum, mean, variance, standard 
deviation, and more specialized features like root mean 
square (RMS), peak-to-peak amplitude (P2P), and crest 
factor. These features provide insights into the signal‘s 
amplitude, variability, and distributional shape, 
incorporating descriptors like skewness and 
kurtosis to quantify asymmetry and the tail 
behavior of the data. Additionally, the frequency 
domain features are extracted using the fast 
Fourier transform (FFT), yielding metrics such 
as the maximum frequency component, sum of 
spectral components, spectral mean, variance, 
and their respective skewness and kurtosis. 
This method, as demonstrated and validated by 
Pedotti, Zago, and Fruett [3], was employed in 
the analysis. These features collectively enable 
the model to leverage both time-dependent and 
frequency-dependent patterns, enhancing its 
ability to detect and classify complex behaviors 
in the data.

2.7 VISUALIZATION

Node-RED is a key component of the monitoring and 
visualization stack, offering realtime insights and alerts. 
It displays crucial information extracted from processed 
data, such as which machines are currently operating 
and their status, enabling operators to address potential 
issues proactively. The user interface also shows 
prediction results, including anomaly alerts and wear-out 
predictions, with customizable threshold levels tailored 
to the specific needs of each industrial application. To 
optimize system efficiency, Node-RED is leveraged for 
data orchestration or offloading tasks like data storage 
and visualization. This frees the sensor hub‘s backend to 
concentrate on critical tasks such as client management. 
Data is logged and stored offline for AI model tuning, 
supporting the continuous improvement of the predictive 
maintenance system.

3 VALIDATION EXPERIMENT

3.1 SETUP DESCRIPTION

The focus of the validation experiment is to prove 
the smart sensor system‘s capabilities as a predictive 
maintenance solution with multi state classification and 
rapid prototyping capabilities. The subject is an industrial 
drill, specifically realizing wear detection for the tools 
used (cf. Fig. 4). The experiment is designed with a single 
sensor setup to validate the system in its minimalist form, 
so 3-axis of acceleration and 3-axis of gyro data were 
collected. To test its fast-learning potential, a relatively 
small dataset was purposely collected and a small frame 
of data for each classification was used to ensure fast 
response times in live mode.

Fig. 4: Industrial drill setup with a smart sensor mounted on the clamping 
jaw using a neodymium magnet (left) and (a) a new drill and (b) a worn-
out, defective drill with visible tip abrasions and cracks (right).

The ISM330DHCX sensor was securely mounted on 
the drilling machine‘s stationary table using a magnetic 
attachment. Two 8 mm drills were employed on a block 
made of aluminum: a standard drill and a defective, worn-
out drill. The Raspberry Pi and router were positioned 
nearby for efficient data transfer. Data was collected in 
four distinct states: machine inactive, idle, drilling with a 
drill in good condition, and drilling with a worn-out drill. 
A total of 6,667 data points were gathered per class, 
each stored in a separate directory in CSV format for 
subsequent model training.
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Fig. 5: Training and testing log loss curves for the XGBoost model, 
illustrating convergence and performance stability over 100 epochs 
(left). The training log loss decreases consistently, while the testing 
log loss stabilizes, indicating effective generalization. Confusion matrix 
representing the model‘s predictions, achieving an overall accuracy of 
95.19% (right). The matrix highlights true positives, true negatives, false 
positives, and false negatives, demonstrating the model‘s classification 
effectiveness across different classes.

Fig. 6: Bar plot displaying the top 20 features ranked by their importance 
in the XGBoost model. Features are sorted by their contribution to the 
model‘s predictive power, with higher values indicating greater importance 
in influencing the target variable. This visualization helps identify key 
predictors driving the model‘s decisions.

3.2 FEATURE EXTRACTION

With the collected dataset 
containing four distinct 
classes, 19 features were 
extracted on each axis, so 
that each data point stemming 
from 50 samples of raw data 
contributed a total of 119 
features. Because of the 
split of 50 samples for a row 
of data, a total of 519 states 
could be generated in the dataset for model training. 
Each class will be represented by about 129 rows of data. 
The size of 50 samples per row was purposely designed 
to ensure quick response time and test the system with 
small batches of data and therefore its rapid prototyping 
capabilities.

3.3 MODEL TRAINING

The model training process employed the standard 
model using the XGBoost algorithm. The dataset was 
fed into the model over 100 epochs, with the algorithm 
optimizing the decision boundaries with each pass. After 
training, the model achieved an accuracy of 95.19%, 
demonstrating its effectiveness in learning from the 
data. To better understand the model‘s behavior and 
performance, several key visualizations were generated: 
a training curve, a confusion matrix, 
and a feature importance plot. The 
training curve plots the model‘s 
accuracy over the 100 epochs, 
showing a rapid improvement in per-
formance during the early epochs. 
Specifically, the curve rises sharply 
at the beginning but starts to flatten 
around 30 epochs, suggesting that 
the model quickly converges and 
reaches its optimal learning state 
early on (cf. Fig. 5). This indicates 
that further training beyond this 
point yields diminishing returns, 
though the model continues to refine 
itself slightly across subsequent 
epochs.

The confusion matrix provides insight into the 
classification performance across different classes. 
It reveals that the majority of predictions made by the 
model are correct, as shown by the high number of 
true positives and true negatives. Misclassifications are 
relatively rare, indicating that the model has learned to 
distinguish well between the various classes.

The feature importance plot further sheds light on 
the inner workings of the XGBoost model by ranking 
the features based on their contribution to the final 
predictions (cf. Fig. 6). The plot reveals a smooth and 
gradual decrease in feature importance, indicating that 
many of the features in the dataset play a meaningful role 
in the model‘s decision-making process, contributing to 
its robustness and generalizability.
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Following the initial data collection phase, the server can 
be manually switched to live mode. In this mode, smaller 
batches of 50 data points are collected and processed 
in near real-time. Extracted features from these batches 
are used to generate predictions using the trained 
XGBoost ML model. The reduced data size enables 
faster prediction times without compromising accuracy. 
To facilitate visualization, the server sends the extracted 
features and corresponding predictions via MQTT, 
each on its dedicated topic, ensuring synchronized and 
accurate representation of the drill‘s status. Node-RED 
then receives these messages and processes them for 
visualization purposes (cf. Fig. 7).

Fig. 7: The live monitoring user interface built with Node-RED, displaying 
the top eight features and the model‘s classification results. A red-light 
indicator shows that a defective drill has been detected.

The system updates the user interface every second, 
demonstrating the model‘s ability to detect changes 
in the drill‘s condition quickly and reliably. To enhance 
explainability, the top eight features were plotted in real-
time, allowing users to track variations over time as drills 
with different conditions are used. The interface can be 
displayed both on a local screen and accessed remotely 
via a mobile device‘s web browser, indicating that the 
system‘s processing power is sufficient for real-time 
monitoring.

4 RESULTS

The ISM330DHCX sensor-based system demonstrated 
its ability to monitor milling machine performance by 
collecting data across four distinct machine states: 
inactive, idle, drilling with a standard drill, and drilling 

with a worn-out drill, making it an effective alternative 
or addition to traditional data acquisition methods. By 
capturing and analyzing this data, the system effectively 
detected anomalies related to machine operation and 
tool wear. This early identification of states and defects 
helps avoiding costly downtimes and improves product 
quality.

Additionally, the sensor‘s use in detecting wear on machine 
components presents a cost-effective solution compared 
to more expensive vibration analysis tools. The system 
supports two modes of operation: one for more extensive 
AI tasks that require advanced anomaly detection and 

tool life estimation via a dedicated training 
server, and a more compact, edge-based 
mode using the XGBoost algorithm. The 
latter can be trained directly on the edge 
device, such as the AI hub, providing an 
offline, self-sufficient alternative that is 
ideal for simpler maintenance tasks like fault 
detection and machine state monitoring.

Future improvements could include 
incorporating a standard for advanced tool 
life and wear estimation features, enabling 
more accurate predictions of tool longevity 
and optimized maintenance schedules. The 
system‘s integration with Node-RED for 
realtime visualizations of predictions further 
enhances its utility for live monitoring, 
providing continuous insight into machine 
health. The data flow can also be adjusted 
to work with external systems such as 
enterprise resource planning or cloud-

based monitoring platforms.

5 DISCUSSION AND CONCLUSIONS

In this paper, a cost-effective smart sensor system for 
industrial monitoring and predictive maintenance was 
presented. This system leverages affordable, low-cost 
components and open-source based software to enable 
real-time data collection, processing, and analysis. By 
optimizing power consumption and implementing AI 
algorithms, the system provides valuable insights into 
machine behavior, enabling predictive maintenance, 
quality monitoring, wear detection, and tool life analysis. 
The results demonstrate the effectiveness of the 
approach to improve productivity, reducing downtime, 
and increasing overall efficiency. As Industry 4.0 
continues to evolve, the smart sensor system proposed 
in this paper could play a significant role in transforming 
industrial manufacturing processes by lowering the 
barriers of entry.
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Abstract. In industrial machining processes, 
guaranteeing process stability is of great economic 
relevance for ensuring workpiece quality. If deviations are 
not detected instantly, this leads to production faults and 
the associated reworking or new production. This paper 
presents exemplarily some results of a research project 
that was focused on self-learning monitoring methods 
to evaluate the tool and workpiece condition and to 
report critical situations. The project involved validating 
machine learning methods and developing a guideline. 
An important sub-goal is to help small and medium-sized 
enterprises to implement such a process analysis based 
on artificial intelligence in their production environments. 
In detail, this paper presents the results of a classification 
of different materials that are automatically detected on 
a band saw. For that reason, the machine was equipped 
with retrofit sensor technology and several test specimens 
made of different materials were cut. The collected data 
was analyzed by numerous feature-based models in order 
to identify the optimal artificial intelligence method. It 
could be shown that automatic classification can identify 
the different materials by their vibration characteristics. 
Technical maturity and transferability to other machining 
processes and machines was ensured through the use of 
open-source software for the in-house development of 
the entire infrastructure for data acquisition, processing, 
and analysis. This includes a range of functions from the 
areas of anomaly detection, predictive quality, predictive 
maintenance, and other specific approaches on the way 
to Industry 4.0.

Keywords: Artificial Intelligence, Predictive 
Maintenance, Retrofit, Sawing Processes, Sensor Data 
Analysis.

1 INTRODUCTION

The use of machine learning (ML) methods in industrial 
production offers significant economic benefits for 
machine operators by optimizing processes, improving 
product quality, and minimizing downtime. ML algorithms 
analyze large amounts of production data, identify 
patterns as well as anomalies and can be used to 
optimize machine parameters in real time. This leads to 
a significant reduction in operating costs and improved 
resource utilization. ML algorithms detect and correct 
production errors at an early stage, reduce the reject 
rate and increase product quality. The investment in 
ML-based technologies quickly pays for itself through 
savings in operating costs, quality improvements and a 
reduction in downtime. Optimized production processes 
enable higher machine utilization and better scalability. 
The use of ML can significantly reduce operating costs. 
However, implementation requires technical specialist 
know-how and a solid database. In general, the results 
prove that ML has a wide range of possible applications 
and supports quality assurance. Primarily, the handling 
of large amounts of data, data processing, and feature 
extraction were considered. A standardized plug-and-
play solution for implementation in small and medium-
sized enterprises (SME) would be desirable but cannot 
be classified as feasible. The feasibility and potential 
in manufacturing SMEs and the means by which these 
technological solutions are implemented in production 
were also considered.

ML methods are attracting particular attention in various 
application areas. Starting with methods of fuzzy logic 
and the use of neural networks (NN), methods from 
the field of artificial intelligence (AI) and ML have been 
researched for many years with regard to monitoring 
tasks in machining production technology. E.g., [1-
3] provide an overview of the application of NN in 
machining processes. Current research approaches 
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usually pursue the goal of drawing conclusions about the 
process using a large number of different sensors on the 
tool, workpiece, or machining center as well as complex 
analysis measures. AI and ML methods have been used 
for some time now. In 2018, Dimla provided an approach 
for automated tool monitoring in which NNs are also ap-
plied [4].

AI methods offer great potential in the processing and 
evaluation of sensor-based component, system, and 
process status information in production and for the 
implementation of monitoring and process control 
strategies [5]. ML makes it possible to profitably utilize 
an increasing amount of available data in manufacturing 
companies. This data can represent information about 
production processes and their process parameters 
or component quality. By applying ML approaches, 
this data can be analyzed and evaluated in order to be 
used to reduce maintenance costs, detect defective 
parts, or for intelligent process control. With the help of 
statistical procedures, heuristics, AI methods, and swarm 
intelligence, fuzzy correlations or systems that contain 
unknown parameters and parameter dependencies can 
be approximated, mapped, and described.

Using AI algorithms, self-optimizing machine systems in 
the manufacturing environment are the focus of several 
research projects. In particular, the Decision Tree, Support 
Vector Machine (SVM), Random Forest, k-Nearest 
Neighbor (KNN) and Bayesian Networks methods have 
been researched in recent years and are increasingly 
being investigated with regard to their suitability for use 
in the manufacturing environment [6].

In contrast to a wide range of exemplary work on the use 
of individual AI or ML methods, there are only isolated 
approaches in which different algorithms are examined 
comparatively. Ambhore et al. summarize the current 
state of knowledge on tool monitoring [7]. Among other 
things, they present current approaches for evaluating 
the tool condition based on cutting force, structure-borne 
sound, acceleration, power, temperature, and workpiece 
surface measurements. It is concluded that the use of 
modern AI models and classification algorithms will 
enable more reliable and robust monitoring systems in 
the future. Nevertheless, the use of AI and ML methods 
continues to pose considerable challenges, especially for 
SMEs, as their implementation requires a certain amount 
of specialist knowledge on the one hand and a not 
inconsiderable amount of effort is required for successful 
application due to the possible variety of data on the 
other.

Wear-resistant materials such as Inconel or Stellite 
are indispensable in high-performance applications, 
particularly in the aerospace and power generation 
industries. Although their outstanding strength, hardness, 
and heat resistance are necessary, they make machining 
considerably more difficult. They are therefore classified 
as difficult to machine. Inconel, a nickel-chromium alloy, 
is often used in extreme temperature environments, such 
as in turbines or aircraft engines. These alloys retain 
their strength even at high temperatures and offer high 
resistance to oxidation and corrosion. However, machining 
leads to rapid tool wear and high temperatures, which 
makes it considerably more difficult. Stellite, another 
high-strength alloy based on cobalt, has similar machin-
ing difficulties, particularly due to its hardness and wear 
resistance.

There is often no alternative to using such materials 
as they are required in critical applications where 
conventional materials would fail. Numerous approaches 
have been developed to improve the machining of these 
difficult-to-cut materials, such as optimized cutting tools 
made of special carbides or ceramics that withstand the 
high probability of wear. In addition, innovative cooling 
methods and lubricants are used to reduce the heat 
generated during machining [8].

Acoustic sensors measure the airborne noise generated 
by the machine and can be used to detect abnormal 
operating noises that indicate malfunctions or wear. 
They are an important tool for early fault detection and 
help to improve machine availability [9]. Edge computing-
capable sensors can process data directly on site, which 
is particularly advantageous in dynamic processes. The 
integration of this sensor data with ML makes it possible 
to better understand complex relationships in machining 
processes and to make predictions about machine 
conditions or process deviations. These predictions are 
particularly important for predictive maintenance and 
process optimization [10]. The greatest challenge in 
sensor technology lies in integration and data processing. 
The large amount of data generated must be processed 
efficiently and converted into useful information. Another 
limitation is sensor placement, as not every location in a 
machine tool is accessible or suitable to enable precise 
measurements. In addition, environmental conditions 
such as high temperatures, humidity, or mechanical 
disturbances can affect the accuracy and reliability of 
the sensors.

In this paper, some of the results from a research 
project aimed at providing SMEs with easy access to 
AI technology and process analysis are presented. This 
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objective was considered at every stage of development. 
In particular, this paper focuses on the AI-based 
automatic detection of different materials processed by a 
sawing machine. Similar to a previous publication [11], this 
paper aims to demonstrate how quickly and efficiently in-
house developed AI systems, utilizing low-cost hardware 
and open-source software, can solve machine-specific 
problems and support the specialized requirements of 
SMEs.

2 MATERIALS AND METHODS

At the beginning of the machining and data collection 
tests, it was decided to first machine standard materials 
in different shapes and use them to test data acquisition 
and further processing. Accordingly, cylindrical round 
material made of 1.0503 (C45+C/+SH) according to 
DIN EN 10277:2018-09 with a diameter of 150 mm was 
purchased [12]. Fig. 1 shows an example of this raw 
material in the form of 1 m long pieces on the MEBA saw. 
Subsequently, it was decided to focus on material with a 
diameter of 40 mm. Thus, other materials including cast 
rods made of Celsit V and round material made of Inconel 
718 were processed and analyzed [13,14].

Fig. 1: Cylindrical C45 with a diameter of 150 mm. Fig. 2: Definition of several potential sensor positions 
at the bandsaw MEBA e-cut 400A.

arrangements was, among other things, perfect and 
risk-minimized cable routing for the sensors. The cables 
had to be adapted to the full range of movement of the 
respective components of the band saw and possible 
damage caused by the saw blade and sawdust had to be 
avoided. The test positions are shown in Fig. 2.

Test position 1 is on the clamping jaw facing the front, 
whereby position 6 is on the side of the clamping jaw. The 
left one is moved adaptively towards the component to 
be sawn and is therefore a moving component. The aim 
of the measurements is to directly record the vibrations 
in the component during the sawing process, whereby 
a moving component is only considered secondarily. 
Test positions 2, 3, 4, 5, and 7 are located on the right-
hand clamping jaw, which is permanently integrated and 
connected to the band saw. This means that the vibrations 
that occur within the entire band saw are transmitted to 
this clamping jaw. It should be noted that test position 7 is 
located to the side of the right clamping jaw and therefore 
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In the course of the test setup and the first test 
measurements on the MEBA e-cut 400A bandsaw 
machine, it was first necessary to equip it with 
appropriate sensor technology. In order to best capture 
the vibrations that occur within the bandsaw during the 
sawing processes, tests were carried out to determine 
the optimum positioning of the retrofit hardware. A 
laser Doppler vibrometer was used for these tests, with 
which the vibrations on the band saw were recorded 
at different positions. Due to natural vibrations, certain 
housing components as well as the guard plates of the 
band saw were not taken into consideration. This was to 
avoid falsified recordings of the sensors. Another aspect 
in the selection of the test positions for possible sensor 
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Fig. 3: Frequency in point 4 recorded by a laser Doppler vibrometer.

Fig. 4: Flow chart for the visualization of principles for data preparation.

close to the object to be sawn. The danger here, however, 
is that during operation of the band saw, components 
with a large edge length are also processed, which could 
come into contact with a possible sensor at position 7 in 
an emergency. For this reason, a possible positioning in 
this area was initially only considered secondarily. The 
results obtained using the vibrometer show that points 
3, 4, and 5 have little noise in the entire frequency range, 
making them suitable for positioning sensors. Since the 
recordings of the frequencies in points 4 and 5 show less 
noise than point 3, these two points were shortlisted for 
the positioning of the required sensors. The following 
diagram in Fig. 3 depicts the results of the measurements 
taken with the laser Doppler vibrometer. The X-axis 
shows the time in ms. The Y-axis shows the frequency 
in Hertz. The intensity of the discoloration represents 
the frequency. The vertical lines can be ignored as they 
are overload signals. A direct comparison of the plots of 
the different points shows that the horizontal lines are 
relatively uniform. In order to avoid or minimize possible 
contamination, point 4 was ultimately selected as the 
position for the sensor, as it is not positioned near the 
workpiece to be processed.

For further preparation of the sawing tests, the hardware 
was installed and used as an edge server for 
data processing. The setup was designed to 
enable live monitoring of the sawing test, live 
display of the NN, and live image transmission 
for observing the sawing test. Thanks to the 
structure of the data processing system, 
the recorded vibrations from the sawing tests could be 
processed and transmitted without any problems. The 
data was properly stored, processed, and made available 
to the NN. This allowed the data recorded by the sensors 
to be evaluated in near real time during the tests and all 
data control steps to be carried out via remote access.

The carbide band saw blade used for the tests with the 
dimensions 6220 mm x 41 mm x 1.3 mm and a toothing 
of 3/4 K was heavily stressed in the first tests. There are 
no fixed criteria as to when a band is considered worn, 
as wear increases continuously. Quality defects on the 
workpiece do not necessarily occur, but the probability 
of damage increases. If the parameters remain constant, 
wear is particularly evident in the vibration pattern. 
The tests before the belt change were mostly carried 
out in a worn condition. After changing to a new band 
saw blade with the same settings, some tests could 
be repeated and a direct comparison carried out. The 
measurement procedure was identical for all tests, 
although different sensors and measurement parameters 
were initially experimented with. For a better overview, 
these preliminary tests will not be discussed in detail. 
First, the saw was prepared, the parameters set, and the 
material clamped. The sensor settings (sensitivity and 
measuring range) were made via the aforementioned user 
interface. The same interface was also used to name the 
measurement data and document the tests. The system 
was programmed in such a way that the measurements 
were started automatically from the OPC UA signal via the 
actual pressure and the measured values were recorded 
with the self-made hardware called NodeOne [15]. The 
automated recording meant that large amounts of data 
could be collected quickly as long as the same material 
was used.

Due to the high sampling rates, numerous data points 
were generated per second, which contain a lot of 
information but cannot be read out efficiently. Data 
preparation was therefore required for feature-based 
learning. Various feature extractors are available for this 
purpose. A frequently used open-source Python library 
is the Time Series Feature Extraction Library (TSFEL) [16], 
which provides a large number of spectral, statistical 
and temporal features. The data preparation process is 
shown in the flowchart in Fig. 4.

To ensure a fast response time of the system, the raw data 
was divided into sections with a length of 1 s each and 
then combined into several features. The overlap of the 
data blocks was set at 50%. The first models were trained 
on this basis. The open-source library PyCaret was used 
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to compare various algorithms [17]. One example of this is 
the Light Gradient Boosting Machine (LGBM) framework 
[18], which is based on decision tree algorithms and is 
used for tasks such as ranking, classification, and other 
ML tasks. The focus of the framework is on performance 
and scalability. For further evaluation, the relevance of 
each feature in the selected model was examined so that 
the number of features could be reduced in subsequent 
iterations until an efficient ratio between model accuracy 
and computational effort existed.

First, the data preparation for the automated detection 
of different materials was carried out. The measurement 
data of the different materials was annotated for this 
classification. No distinction was made between the 
wear of the band saw blade. The setup data set with 
all features and the classification was combined and 
mixed. This gave the model a uniform training that was 
independent of the order of the data.

The dataset was split into two parts: 80% of the data was 
used for training, again 80% of this training set was used 
for the training process, and 20% was used to validate 
the training to avoid overfitting. The remaining 20% of the 
total data points were used for the final validation. This 
has the advantage that this data was not included in the 
training and thus a more realistic estimation of the model 
performance is based on new, previously unknown data. 
The training data set was loaded, and the training was 
performed with the open-source Python library PyCaret. 
This makes it possible to test the following different 
model categories:

1. Tree-based models

• Extra Trees Classifier 
• Random Forest Classifier 
• Gradient Boosting Classifier 
• LGBM 
• Decision Tree Classifier

2. Ensemble methods

• Random Forest Classifier (also tree-based) 
• Extra Trees Classifier (also tree-based) 
• Gradient Boosting Classifier (also tree-based) 
• LGBM (also tree-based)

3. Linear models

• Logistic Regression 
• Ridge Classifier 
•SVM - Linear Kernel 
•Linear Discriminant Analysis (LDA)

4. Non-linear models

• SVM - Linear kernel (also linear) 
• KNN Classifier

5. Bayes models

• Naive Bayes 
• Quadratic Discriminant Analysis 
• LDA (also linear)

6. Baseline models

• Dummy Classifier

Table 1 shows the F1 score and the accuracies. These 
metrics offer a comparison of the performance of the 
models and help to select the optimum for the respective 
task.

Model F1 Score Accuracy

Extra Trees Classifier 0.9954 0.9954

LGBM 0.9945 0.9946

Gradient Boosting Classifier 0.9942 0.9942

Random Forest Classifier 0.9934 0.9934

KNN Classifier 0.9931 0.9931

LDA 0.9903 0.9904

Logistic Regression 0.9891 0.9892

Ridge Classifier 0.9891 0.9892

SVM - Linear Kernel 0.9855 0.9857

Decision Tree Classifier 0.9803 0.9803

Ada Boost Classifier 0.9292 0.9359

Naive Bayes 0.8758 0.8649

Quadratic Discriminant Analysis 0.5288 0.5368

Dummy Classifier 0.3426 0.5083

Tab. 1: Overview of the F1 scores and accuracies of all models for 
classification.

3 RESULTS

The results show that most of the models tested are 
highly accurate and enable reliable classification. The 
LGBM was selected for further evaluation. This model 
is based on decision tree algorithms and is designed for 
tasks such as ranking, classification, and other ML tasks. 
The focus in the development of LGBM is on performance 
and scalability, which makes it a suitable choice for large 
and complex datasets. The confusion matrix in Fig. 5 
illustrates the performance of LGBM in classifying the 
three materials C45, Celsit V, and Inconel.
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Accuracy on test data 0.99

Precision on test data 0.99

Recall on test data 0.99

F1 score on test data 0.99

Fig. 5: Confusion matrix for classification of different materials.

Tab. 2: Results of the classification of different materials.

C45: 

Celsit V:

Inconel:

The model achieves a perfect result for this 
class with an accuracy of 100%. All samples 
of C45 were correctly detected without any 
confusion with other classes.

Here too, the model performs almost 
perfectly with an accuracy of 99%. Only 1% 
of the samples from Celsit V were incorrectly 
classified as C45.

The Inconel class was classified correctly 
96% of the time. However, 4% of the Inconel 
samples were recognized as Celsit V, which 
indicates a low dif-ficulty of the model to 
completely separate these two classes.

Overall, the model shows a very high classification 
accuracy, especially for the classes C45 and Celsit V. 
Most confusions occur with the Inconel class, which 
was incorrectly classified as Celsit V in some cases. 
These confusions could be an indication of a structural 
similarity between the two classes in the feature space 
and represent a potential starting point for further model 
optimization. In addition, the model can be extended 
to include other materials and the accuracy for similar 
materials can be further investigated. The accuracy was 
checked using the previously separated validation data. 
The results of this validation are shown in Table 2. These 
confirm that the model retains a high level of accuracy 
even with the new data not used in the training.

4 DISCUSSION AND CONCLUSIONS

The flowchart in Fig. 6 visualizes the 
procedure and serves as an initial orientation 
for SMEs. It provides an overview of the 
key steps and requirements that should be 
taken into account when introducing ML to a 
company. It also visualizes basic information 
and typical processes, but is not necessarily 
universally valid, as every company has 
specific challenges and framework conditions 

that need to be adapted individually.

First, the company should formulate clear goals for the 
use of ML. It is important to understand which problems 
are to be solved and which benefits can be achieved 
through ML. This could include the optimization of 
production processes or the prediction of maintenance 
requirements. As ML models require high quality data, it 
is important to take stock of the existing data sources 
and ensure that the data is complete, accurate, and 
relevant. In many cases, it is necessary to cleanse and 
transform data before modeling to make it usable for ML 
algorithms. In the case of decomposition, this means that 
the data must be recorded. To do this, sensors must be 
placed in the selected process.

The sensors are used to collect the relevant data, which 
is followed by the selection of the right ML tools and 
platforms. For SMEs, it makes sense to implement the 
use of existing ML solutions and not to carry out costly 
in-house development. After data preparation and the 
selection of suitable ML methods, model development 
begins. In this phase, various ML models are created 
and trained on the basis of the collected data. The 
model is optimized through repeated training processes 
and validations in order to make accurate predictions 
or decisions. The ML model is then integrated into the 
processes of the company. This can include integration 
into existing software systems, the automation of certain 
tasks, or the support of decision-making processes. The 
integration should be carried out in such a way that it 
does not disrupt ongoing operations and fits seamlessly 
into the existing infrastructure. At this point, the need 
for early planning and strategic integration into company 
structures becomes clear and the research results show 
the complexity of the entire topic.
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Fig. 6: Overview of necessary steps to integrate ML into the processes 
of a company.

The main objective was to provide SMEs in the field of 
machining with an easy introduction to the use of AI for 
analyzing their manufacturing processes. The focus was 
on the machining of difficult-to-cut and inhomogeneous 
materials in order to increase the efficiency of machine 
and tool use and to reduce wear.

Several sub-goals were pursued, all of which were geared 
towards the overarching goal. Particular emphasis 
was placed on showing companies various options for 
gradually integrating AI technology into their existing 
infrastructure. This should enable them to achieve initial 
successes and recognize the potential of AI-based 
analyses for optimizing their manufacturing processes.

The analysis of the manufacturing processes focused in 
particular on difficult-to-machine and inhomogeneous 
materials using the example of sawing. By using ML, data 
from the ongoing processes could be evaluated in (near) 
real time, enabling companies to identify weak points in 
their processes and take targeted optimization measures 
(predictive quality, predictive maintenance). It was shown 
that it is possible to improve the efficiency of machine 
and tool utilization with low-threshold software and 
hardware solutions. In the laboratory environment, it was 
possible to reduce tool wear. Nevertheless, it should be 
noted that the mentioned experiments were conducted 
on a laboratory level. The reported high accuracies 
for the models may be unrealistic or overestimated 
without proper real-world validation, raising concerns 

about potential overfitting or biases in 
the dataset. For future work, an industrial 
transfer should be considered, which will 
split up those clear laboratory results into 
variant real-world insights. Then, it will be 
much more important to provide a robust 
model that is able to compensate possible 
interferences. This demonstrates the 
potential to achieve not only a longer tool 
life but also higher production quality and 
speed in an SME production environment.

During the course of this project, it became 
evident that the use of AI in manufacturing 
offers numerous advantages, particularly 
for SMEs, which often have limited 
opportunities to optimize their processes 
based on data due to a lack of expertise 
and potentially a shortage of personnel. 
The findings and methods developed 
as part of the project now offer these 
companies a valuable starting point for 

securing their long-term competitiveness and asserting 
themselves in an increasingly technology-driven market 
environment.
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Abstract. Classifying microstructures in flake graphite 
cast iron (GJL) micrographs can be challenging due to the 
frequent occurrence of mixed microstructures and the 
smooth transitions between their microstructure types. 
In this paper, we propose a method to segmentate the 
microstructures of flake graphite cast iron micrographs 
based on the DIN EN ISO 945-1 standard. This method uses 
an object-based approach, storing separate micrograph 
regions corresponding to specific microstructure types 
as individual binary images (binary objects) in a dataset. 
We can then create synthetic micrographs by randomly 
arranging these objects and converting the result into a 
grayscale image using a U-Net model. Since we assign 
each object to a specific microstructure type, we can 
also create the corresponding semantic segmentation 
masks for the synthetically generated micrographs. 
With the resulting dataset of the synthetically generated 
micrographs and their respective masks, we trained a 
U-Net model to enable an objective, reproducible, and 
accurate evaluation of the micrographs. Tested on real-
world micrographs, the trained model showed difficulties 
in generalization and using global texture features and 
patterns. Possible solutions to these challenges and 
approaches to improve the results are given in an outlook.

Keywords: flake graphite cast iron · GJL · DIN EN ISO 
945-1 · semantic segmentation · classification

1 INTRODUCTION

Technological advancements increase the demands 
placed on products during their development 
and evolution. This raises expectations for 
materials like cast iron, necessitating a meaningful 
quantitative description of their microstructure 
to determine and control the material properties.  
 
Flake graphite cast iron (GJL) is a versatile material used 
in various machines and systems. Its unique properties 
make it suitable for complex geometries such as cylinder 
crankcases, cylinder blocks, compressors, steam 
turbines, pumps, and valves. [1]

For qualitative characterization of the microstructure of 
GJL, the samples are ground and polished so that the 
lamellar structure is visible under the microscope. The 
classification is then performed according to industry 
standards (DIN EN ISO 945-1 [2], ASTM A247 [3]), which 
provides reference images for the different classes.

However, using the current standard shows difficulties in 
evaluating the microstructures, as the structures represent 
only a simplified two-dimensional representation of 
the three-dimensional GJL objects. This problem was 
previously highlighted by the results of the DIAgraph II 
(IGF No. 20650 N) project ring test , where participants 
produced varying segmentation masks for a single GJL 
micrograph [4]. Additionally, in the current DIAgraph ML 
(IGF No. 22783 N) project, we demonstrated that even 
a single person’s assessment can vary over time when 
classifying the same GJL micrograph at different times. 
Therefore, there is an actual demand for a deterministic 
and objective evaluation of GJL microstructures.

Methods such as focused ion beam tomography (FIB) 
[5] or computer tomography (CT) [6] can also offer 
initial approaches for characterizing the 3-dimensional 
structure of the GJL. Moreover, these approaches can 
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also be used to get correlations between 2-dimensional 
cross-sections and 3-dimensional structures of GJL 
objects.

In this paper, we present an approach for semantic 
segmentation that classifies GJL microstructures into 
their respective arrangement classes. To achieve this, 
we train a U-Net model [7] to generate a segmentation 
mask for a given input micrograph. The segmentations 
are based on the DIN EN ISO 945-1 standard.

Given the time-consuming nature of creating 
segmentation masks and the variability in classifying 
complete microstructures, we focus on creating objects 
using crops of the microstructures. Each object is 
explicitly assigned to a specific arrangement class. By 
randomly arranging these objects, we can generate 
synthetic micrographs and their corresponding semantic 
segmentation masks. These synthetic micrographs are 
then used to train the U-Net model, and the model’s 
performance is evaluated using common metrics such as 
Intersection-over-Union (IoU) and Dice Score [8].

Afterward, we will discuss the results based on real-
world micrographs and address adjustments we plan to 
make for the future progress of this project.

2 PRELIMINARIES

2.1 GRAPHITE STANDARD: DIN EN ISO 945-1

The DIN EN ISO 945-1 (Fig. 1) [2] standard classifies cast 
iron into six different graphite form types. These forms are 
typically referred to as flake graphite (form I), vermicular 
graphite (form III), temper carbon (form V), and spheroidal 
graphite (form VI). Furthermore, for cast iron with flake 
graphite (form I), there is an additional subdivision into five 
different graphite arrangement classes, which are known 
as A-graphite, B-graphite (rosette graphite), C-graphite 
(primary graphite), D-graphite (interdendritic graphite/ 
undercooled graphite), and E-graphite (degenerate 
interdendritic graphite). The arrangement classes repre- 
sent an ideal state; however, there are many intermediate 
stages between these classes, which complicates the 
qualitative characterization of the microstructure.  [2] [9]  

Fig. 1: Drawings visualizing the six types of graphite forms in cast iron (top row), along with 
the five arrangement classes of flake graphite cast iron (bottom row). The images represent 
micrographs at 100x magnification. [2]

2.2 U-NET

U-Net is a convolutional neural network (CNN) first 
introduced by Ronneberger et al. [7]. The model has an 
encoder-decoder structure with lateral skip connections. 
These skip connections allow the model to pass 
information from the encoder layer to the corresponding 
decoder layer to produce a more exact output. It was 
named after its architectural shape since the encoder and 
decoder are constructed symmetrically (contraction step 
in encoder: 3x3 Conv, ReLU, 3x3 Conv, ReLU, 2 x 2 max-
pool, expansion step in decoder: 2 x 2 ConvTranspose, 
3x3 Conv, ReLU, 3x3 Conv, ReLU). Although the number 
of channels doubles for each max-pooling operation in 
the contraction step, it is halved during each transposed 
convolution of the expansion step. Since the output of 
the transposed convolution is concatenated with the 
skip connection, the first 3x3 convolution also halves the 
number of channels.

Since U-Net relies on operations like convolution and 
max-pooling, the architecture can handle images of 
arbitrary size as long as the GPU memory is sufficient and 
the image dimensions allow for contraction. This ensures 
that the resulting segmentation is seamlessly connected. 
If GPU memory is limited, we can split the images into 
overlapping patches, process them independently, and 
stitch them together to create a seamless segmentation 
(overlap-tile strategy).

Our implementation differs from the original paper 
when talking from U-Net in this paper. We used 3 x 3 
convolutional layers with padding and added batch 
normalization [10] after ReLU.

3 OBJECT-BASED APPROACH

This chapter will present the object-based approach for 
the semantic segmentation of GJL micrographs based on 
the DIN EN ISO 945-1 standard.

3.1 OBJECT DATASET

In this part, we will create binary objects for the different 
arrangement classes. Why binary objects instead of 

grayscale? Using binary objects, we can isolate 
the objects from other artifacts in the crop. 
Furthermore, a separation of the background 
is desirable due to differences in saturation, 
brightness, and contrast across the micrographs.

To separate an object, we ensure that the 
micrograph is given in grayscale format. We 
cropped the corresponding object area from 
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the micrograph and select an appropriate threshold for 
binarization. Afterward, we isolate the object by removing 
artifacts or other elements (Fig. 2). For specific objects, 
such as B-graphite, we apply a sharpening method 
(unsharp mask) before the binarization to better visualize 
the fine details of the lamellar structure. For A-graphite, 
we filtered the contours in the images to automatically 
detect and extract the objects. After reviewing and 
sorting out the degenerated objects, we created 1411 
A objects of 14 micrographs. For the other types of 
graphite, we had to make the crops ourselves. We ended 
up with 200 B, 51 C, 76 D, and 84 E objects (81, 11, 9, and 
24 micrographs).

Note: To get a better workflow, we trained a U-Net to 
transform grayscale image crops into binary crops. 
Equivalent to the U-Net, which transforms binary objects 
back into grayscale objects. (Section 3.2).

3.2 SYNTHETIC MICROGRAPHS

Using the object dataset, we create a binary mask by 
randomly placing objects in a 2048 x 2048 area. Before 
positioning, each object is randomly mirrored (horizontal/ 
vertical) and rotated in 45-degree increments. An object 
is only placed if its contour (white pixels Fig. 2c) does 
not overlap with the contours of already placed objects. 
To avoid early placement conflicts, each object is given 
multiple attempts to find a non-overlapping position. 
Since each object is assigned to a specific arrangement 
class, we generate a corresponding semantic mask by 
applying color coding, as shown in Fig. 3a.

Fig. 2: Object extraction in the GJL micrograph: (a) the original micrograph 
with the target object outlined by a bounding rectangle; (b) a binarized 
version of the cropped image; and (c) the isolated object after removing 
artifacts or other objects.

Fig. 3: Fig. Synthetic image generation: (a) random placement of 
predefined objects with color-coded classes (A: purple, B: green, 
C: orange, D: cyan, E: blue); and (b) the corresponding grayscale 
synthetic image.

(a) GJL micrograph

(a) Mask with color-coded classes

(b) Grayscale synthetic image

(b) Binarized image

(c) Isolated object

To transform the binary mask into a synthetic micrograph, 
we trained a U-Net model using 256x256 images with 
binary inputs and grayscale outputs. As images, we used 
120 micrographs of a single B graphite sample divided 
into 13310 training patches and 1210 validation patches. 
Moreover, this B-graphite sample offers a spectrum of 
finer and coarser lamellar. Further, we used the binary 
cross-entropy with logits loss function and the Adam 
optimizer. After training the model, we perform inference 
on the binary mask to obtain the synthetic micrograph 
(see Fig. 3b).
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3.3 SEMANTIC SEGMENTATION

With the ability to generate synthetic images along with 
their corresponding semantic segmentation masks, 
we created a dataset of 1000 training, 100 validation, 
and 50 test pairs to train a U-Net model to segment 
GJL micrographs. During training, we apply random 
data augmentation, such as changing the brightness 
or contrast, flipping, rotating, and blurring the input 
image. The output consists of a binary mask for each 
GJL class. However, we train the model like a multi-label 
segmentation even though the binary classes have no 
overlapping. We wanted to predict the model’s confidence 
for each class independently, so we used a sigmoid 
activation with a binary cross-entropy loss function over 
a softmax with categorical cross-entropy.

Fig. 4 shows the good performance of our model based 
on the IoU and Dice score metrics (visualized using the 
Seaborn library [11] and Matplotlib [12]). However, due to 
the small object dataset, the synthetic test images were 
generated using the same objects as the training and 
validation data, which may have influenced the results.

3.4 EVALUATING ON REAL-WORLD MICROGRAPHS

To test the performance of our trained segmentation 
model on real-world data, we selected three images 
that several experts had already classified (Fig. 5). All 
micrographs showed problems with correctly classifying 
graphite A. As soon as the lamellar appears to become 
thicker, they are classified as C. In addition, many A 
graphite objects have also been classified as E graphite, 
implying that the existing A objects in the object dataset 
need to be more diverse.

Furthermore, the B object in Fig. 5c is classified as D. 
This outcome was expected, as the objects in our object 
database differ significantly from this one. However, in 
Fig. 5b, the B objects were correctly identified. Although 
the objects in the microstructure are not part of the object 
database, they have a significantly higher similarity 
because they come from the same sample.

Finally, the classification of D graphite in Fig. 5a was 
largely successful. This was very positive since we had to 
divide the D graphite structures (and E) multiple times to 
get an object of feasible size for the random placement 
process in Section 3.2.

4 OUTLOOK

The evaluation of the trained U-Net revealed that it 
struggles with generalizing to real-world micrographs and 

does not recognize global texture features and patterns. 
The analysis of the micrographs is further complicated 
by varying the preparation methods, camera qualities, 
and scaling factors, leading to quality inconsistencies.

To improve future results, we will expand the object 
dataset by including as many diverse objects as possible. 
Further, we will add input layers to train the U-Net, covering 
texture features like the homogeneous distribution of the 
objects displayed in the microstructure and extracting 
characteristics specific to the arrangement classes. The 
object dataset allows us to test whether we can target 
these features. This means that we could use separate 
sets of objects to create synthetic micrographs for the 
training and validation sets. Additionally, we could focus 
on creating mixed microstructures that occur in reality, 
such as arrangements like AB, AC, AD, ADE, AE, or DE, 
and consider the scaling factor (micrometer/pixel) in 
our representation of the synthetic images and texture 
layers. Instead of using binary cross-entropy as a loss 
function, we plan to experiment with categorical cross 
entropy and focal loss. [13] [14]

(a) Intersection-over-Union (IoU): Ranges from 0 to 1 with 1 indicating a 
perfect performance.

(b) Dice Score: Ranges from 0 to 1 with 1 indicating a perfect performance.

Fig. 4: Boxplot diagrams of the performance metrics: (a) Intersection-
over-Union and (b) Dice Score, computed for each class using the 
training, validation, and test datasets from the synthetically generated 
GJL micrographs.
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(a) AD graphite structure (left) and corresponding U-Net segmentation mask (right).

(b) AB graphite structure (left) and corresponding U-Net segmentation mask (right).

(c) AB graphite structure (left) and corresponding U-Net segmentation mask (right).

Fig. 5: Illustration of three GJL graphite structures (left) and their corresponding segmentation masks (right) generated using U-Net. 
The segmentation uses the following color code: A: purple, B: green, C: orange, D: cyan, E: blue. Each structure has been qualitatively 
characterised by multiple experts, ensuring reliable identification of graphite features.

Papers | AI4EA



  143GFaI-TAGUNGSBAND 2024

5 CONCLUSION

The qualitative characterization of GJL is a complex 
challenge. The evaluation of the different micrographs 
often varies from expert to expert. We have presented 
an approach that should enable an objective and 
deterministic evaluation by using objects or structures 
from clearly classified areas of these micrographs. It 
became clear how challenging it is to create an object 
data set representing the numerous facets of the lamellar 
structure. There are ways to diversify the object dataset 
further; however, this approach will reach its limits the 
closer we approach the intermediate forms of two 
classes. Using three-dimensional objects could offer a 
solution in the future, as two-dimensional objects can be 
derived from them by looking at different cross-sections.
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